Exact rate of convergence for increments of random fields
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 8, Tome 320 (2004), pp. 187-225
Voir la notice de l'article provenant de la source Math-Net.Ru
The rate of convergence in strong limit theorems for maximal increments of random fields on parallelepipeds of big volume $a_{N}$ ($\lim\frac{a_{N}}{\log{N}}=\infty$, $\lim\frac{\log\frac{N}{a_{N}}}{\log_{2}N}=\infty$) is investigated. We consider random fields with finite moment generating function in right neighborhood of zero.
@article{ZNSL_2004_320_a15,
author = {O. E. Shcherbakova},
title = {Exact rate of convergence for increments of random fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {187--225},
publisher = {mathdoc},
volume = {320},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a15/}
}
O. E. Shcherbakova. Exact rate of convergence for increments of random fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 8, Tome 320 (2004), pp. 187-225. http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a15/