Estimation in a~model with infinite dimensional nuisance parameter
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 8, Tome 320 (2004), pp. 160-165
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1$ be a random variable with density function $f(t)$, $\Psi(t)$ be an increasing absolutely continuous
function, $\Phi(t)$ be the inverse function, random variable $X_2$ be defined by $X_2=\Phi(X_1)$.  We consider the maximum likelihood estimator for density $\psi$ of function $\Psi$ as we observe two independent samples from the distribution of $X_1$ and $X_2$. Under appropriate conditions on the involved distributions, we prove the consistency of maximum likelihood estimator.
			
            
            
            
          
        
      @article{ZNSL_2004_320_a12,
     author = {V. N. Solev and F. Haghighi},
     title = {Estimation in a~model with infinite dimensional nuisance parameter},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {160--165},
     publisher = {mathdoc},
     volume = {320},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a12/}
}
                      
                      
                    V. N. Solev; F. Haghighi. Estimation in a~model with infinite dimensional nuisance parameter. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 8, Tome 320 (2004), pp. 160-165. http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a12/