Davis-type inequalities for a~number of diffusion processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 8, Tome 320 (2004), pp. 30-43

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain Davis-type maximal inequlaities for Bessel process of dimension parameter $\gg1$ and for the radial Ornstein–Uhlenbeck process. The proofs are based on generalization of the Lenglart domination principle.
@article{ZNSL_2004_320_a1,
     author = {Yu. L. Botnikov},
     title = {Davis-type inequalities for a~number of diffusion processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--43},
     publisher = {mathdoc},
     volume = {320},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a1/}
}
TY  - JOUR
AU  - Yu. L. Botnikov
TI  - Davis-type inequalities for a~number of diffusion processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 30
EP  - 43
VL  - 320
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a1/
LA  - ru
ID  - ZNSL_2004_320_a1
ER  - 
%0 Journal Article
%A Yu. L. Botnikov
%T Davis-type inequalities for a~number of diffusion processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 30-43
%V 320
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a1/
%G ru
%F ZNSL_2004_320_a1
Yu. L. Botnikov. Davis-type inequalities for a~number of diffusion processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 8, Tome 320 (2004), pp. 30-43. http://geodesic.mathdoc.fr/item/ZNSL_2004_320_a1/