On overgroups of $\mathrm{E}(\mathrm{E}_6,R)$ and $\mathrm{E}(\mathrm{E}_7,R)$ in their
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 216-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article is dedicated to description of overgroups of elementary Chevalley groups of types $\mathrm{E}_6$ and $\mathrm{E}_7$ in their minimal irreducible representations. One of the first step towards such description, namely construction of the series of perfect intermediate groups, is made. Probably all perfect intermediate groups for groups of type $\mathrm{E}_6$ are described. The hypothesis concerning the structure of perfect overgroups of type $\mathrm{E}_7$ is made.
@article{ZNSL_2004_319_a6,
     author = {A. Yu. Luzgarev},
     title = {On overgroups of $\mathrm{E}(\mathrm{E}_6,R)$ and $\mathrm{E}(\mathrm{E}_7,R)$ in their},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {216--243},
     year = {2004},
     volume = {319},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a6/}
}
TY  - JOUR
AU  - A. Yu. Luzgarev
TI  - On overgroups of $\mathrm{E}(\mathrm{E}_6,R)$ and $\mathrm{E}(\mathrm{E}_7,R)$ in their
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 216
EP  - 243
VL  - 319
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a6/
LA  - ru
ID  - ZNSL_2004_319_a6
ER  - 
%0 Journal Article
%A A. Yu. Luzgarev
%T On overgroups of $\mathrm{E}(\mathrm{E}_6,R)$ and $\mathrm{E}(\mathrm{E}_7,R)$ in their
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 216-243
%V 319
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a6/
%G ru
%F ZNSL_2004_319_a6
A. Yu. Luzgarev. On overgroups of $\mathrm{E}(\mathrm{E}_6,R)$ and $\mathrm{E}(\mathrm{E}_7,R)$ in their. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 216-243. http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a6/

[1] N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, M., 1972 | Zbl

[2] N. Burbaki, Gruppy i algebry Li, Glavy VII, VIII, M., 1978 | MR

[3] N. A. Vavilov, M. R. Gavrilovich, “$A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{E}_6$ i $\mathrm{E}_7$”, Algebra i analiz, 16:4 (2004), 54–87 | MR | Zbl

[4] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(2l,R)$”, Zapiski nauchn. semin. POMI, 272, 2000, 68–85 | MR | Zbl

[5] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i analiz, 15:4 (2003), 72–114 | MR | Zbl

[6] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i analiz, 19:2 (2007), 10–51 | MR | Zbl

[7] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 40:1 (1990), 145–147 | MR

[8] R. Steinberg, Lektsii o gruppakh Shevalle, M., 1975

[9] R. H. Dye, “Interrelations of symplectic and orthogonal groups in characteristic 2”, J. Algebra, 59:1 (1979), 202–221 | DOI | MR | Zbl

[10] R. H. Dye, “On the maximality of the orthogonal groups in the symplectic groups in characteristic two”, Math. Z., 172:3 (1980), 203–212 | DOI | MR | Zbl

[11] R. H. Dye, “Maximal subgroups of $\mathrm{GL}_{2n}(K)$, $\mathrm{SL}_{2n}(K)$, $\mathrm{PGL}_{2n}(K)$, $\mathrm{PSL}_{2n}(K)$ associated with symplectic polarities”, J. Algebra, 66:1 (1980), 1–11 | DOI | MR | Zbl

[12] R. Hazrat, N. A. Vavilov, “$\mathrm{K}_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[13] O. H. King, “On subgroups of the special linear group containing the special orthogonal group”, J. Algebra, 96:1 (1985), 178–193 | DOI | MR | Zbl

[14] O. H. King, “On subgroups of the special linear group containing the special unitary group”, Geom. Dedic., 19:3 (1985), 297–310 | DOI | MR | Zbl

[15] Sh. Li, “Overgroups of $\mathrm{SU}(n,K,f)$ or $\Omega(n,K,Q)$ in $\mathrm{GL}(n,K)$”, Geom. Dedic., 33:3 (1990), 241–250 | MR

[16] Sh. Li, “Overgroups of a unitary group in $\mathrm{GL}(2,K)$”, J. Algebra, 149:2 (1992), 275–286 | DOI | MR | Zbl

[17] Sh. Li, “Overgroups in $\mathrm{GL}(n,F)$ of a classical group over a subfield of $F$”, Algebra Colloq., 1:4 (1994), 335–346 | MR

[18] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. Ecole Norm. Sup., 4ème sér., 1969, no. 2, 1–62 | MR | Zbl

[19] V. Petrov, “Overgroups of unitary groups”, K-Theory, 29 (2003), 147–174 | DOI | MR | Zbl

[20] M. R. Stein, “Stability theorems for $\mathrm{K}_1$, $\mathrm{K}_2$ and related functors modeled on Chevalley groups”, Japan J. Math., 4:1 (1978), 77–108 | MR | Zbl

[21] J. Tits, “Systèmes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris, Sér. A, 283 (1976), 693–695 | MR

[22] N. Vavilov, “A third look at weight diagrams”, Rendiconti del Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[23] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl