Subroups normalized by the commutator subgroup of the Levi subgroup
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 199-215

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe subgroups of the unipotent radical of a maximal parabolic subgroup of a Chevalley group over a field normalized by the commutator subgroup of the Levi subgroup over a field $K$. It is shown that in the typical case such subgroups are in one-to-one correspondence with the closed subsets of $\{1,2,\dots,n\}$ for a natural $n$. In the exceptional cases the classification also involves additive subgroups of $K$. See the table in the paper for a detailed list of the possibilities.
@article{ZNSL_2004_319_a5,
     author = {V. G. Kazakevich and A. K. Stavrova},
     title = {Subroups normalized by the commutator subgroup of the {Levi} subgroup},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--215},
     publisher = {mathdoc},
     volume = {319},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/}
}
TY  - JOUR
AU  - V. G. Kazakevich
AU  - A. K. Stavrova
TI  - Subroups normalized by the commutator subgroup of the Levi subgroup
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 199
EP  - 215
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/
LA  - ru
ID  - ZNSL_2004_319_a5
ER  - 
%0 Journal Article
%A V. G. Kazakevich
%A A. K. Stavrova
%T Subroups normalized by the commutator subgroup of the Levi subgroup
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 199-215
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/
%G ru
%F ZNSL_2004_319_a5
V. G. Kazakevich; A. K. Stavrova. Subroups normalized by the commutator subgroup of the Levi subgroup. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 199-215. http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/