Subroups normalized by the commutator subgroup of the Levi subgroup
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 199-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We describe subgroups of the unipotent radical of a maximal parabolic subgroup of a Chevalley group over a field normalized by the commutator subgroup of the Levi subgroup over a field $K$. It is shown that in the typical case such subgroups are in one-to-one correspondence with the closed subsets of $\{1,2,\dots,n\}$ for a natural $n$. In the exceptional cases the classification also involves additive subgroups of $K$. See the table in the paper for a detailed list of the possibilities.
@article{ZNSL_2004_319_a5,
     author = {V. G. Kazakevich and A. K. Stavrova},
     title = {Subroups normalized by the commutator subgroup of the {Levi} subgroup},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--215},
     year = {2004},
     volume = {319},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/}
}
TY  - JOUR
AU  - V. G. Kazakevich
AU  - A. K. Stavrova
TI  - Subroups normalized by the commutator subgroup of the Levi subgroup
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 199
EP  - 215
VL  - 319
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/
LA  - ru
ID  - ZNSL_2004_319_a5
ER  - 
%0 Journal Article
%A V. G. Kazakevich
%A A. K. Stavrova
%T Subroups normalized by the commutator subgroup of the Levi subgroup
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 199-215
%V 319
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/
%G ru
%F ZNSL_2004_319_a5
V. G. Kazakevich; A. K. Stavrova. Subroups normalized by the commutator subgroup of the Levi subgroup. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 199-215. http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/

[1] N. Burbaki, Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Mir, Moskva, 1972 | MR | Zbl

[2] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, Moskva, 1975 | MR | Zbl

[3] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl

[4] H. Azad, M. Barry, G. Seitz, “On the structure of parabolic subgroups”, Comm. in Algebra, 18:2 (1990), 551–562 | DOI | MR | Zbl

[5] R. Richardson, G. Röhrle, R. Steinberg, “Parabolic subgroups with abelian unipotent radical”, Invent. Math., 110 (1992), 649–671 | DOI | MR | Zbl

[6] G. E. Röhrle, “On the structure of parabolic subgroups in algebraic groups”, J. Algebra, 157:1 (1993), 80–115 | DOI | MR | Zbl

[7] N. Vavilov, “Unipotent elements in subgroups which contain a split maximal torus”, J. Algebra, 176 (1995), 356–367 | DOI | MR | Zbl