Subroups normalized by the commutator subgroup of the Levi subgroup
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 199-215
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We describe subgroups of the unipotent radical of a maximal parabolic subgroup of a Chevalley group over a field normalized by the commutator subgroup of the Levi subgroup over a field $K$. It is shown that in the typical case such subgroups are in one-to-one correspondence with the closed subsets of $\{1,2,\dots,n\}$ for a natural $n$. In the exceptional cases the classification also involves additive subgroups of $K$. See the table in the paper for a detailed list of the possibilities.
			
            
            
            
          
        
      @article{ZNSL_2004_319_a5,
     author = {V. G. Kazakevich and A. K. Stavrova},
     title = {Subroups normalized by the commutator subgroup of the {Levi} subgroup},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--215},
     publisher = {mathdoc},
     volume = {319},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/}
}
                      
                      
                    TY - JOUR AU - V. G. Kazakevich AU - A. K. Stavrova TI - Subroups normalized by the commutator subgroup of the Levi subgroup JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 199 EP - 215 VL - 319 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/ LA - ru ID - ZNSL_2004_319_a5 ER -
V. G. Kazakevich; A. K. Stavrova. Subroups normalized by the commutator subgroup of the Levi subgroup. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 199-215. http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a5/