The Linnik conjecture. The local approach
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 71-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Linnik sum is expanded in the spectrum by the local method.
@article{ZNSL_2004_319_a2,
     author = {A. I. Vinogradov},
     title = {The {Linnik} conjecture. {The} local approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--80},
     year = {2004},
     volume = {319},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a2/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - The Linnik conjecture. The local approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 71
EP  - 80
VL  - 319
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a2/
LA  - ru
ID  - ZNSL_2004_319_a2
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T The Linnik conjecture. The local approach
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 71-80
%V 319
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a2/
%G ru
%F ZNSL_2004_319_a2
A. I. Vinogradov. The Linnik conjecture. The local approach. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 71-80. http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a2/

[1] Yu. V. Linnik, “Additive problems and eigenvalues modular operators”, Proc. of the International Congress of Math. (Stockholm, 1962), 1963, 217–284 | MR

[2] H. D. Kloosterman, “On the representation of numbers in the form $ax^2+by^2+cr^2+dt^2$”, Acta Math., 49 (1926), 407–464 | DOI | MR

[3] A. Weil, “On some exponential sums”, Proc. Nat. Acad. Sci. USA, 34 (1948), 204–207 | DOI | MR | Zbl

[4] A. Selberg, “On the estimation of Fourier coefficients of modular forms”, Proc. Symposia Pure Math., 8, Amer. Math. Sci., Providence, 1965, 1–15 | MR

[5] N. V. Kuznetsov, “Gipoteza Petersona dlya parabolicheskikh form vesa nul i gipoteza Linnika”, Matem. sb., 111:3 (1980), 334–383 | MR | Zbl

[6] I. M. Deshouillers, H. Iwaniec, “Kloostermann sums and Fourier coefficients of cusp form”, Invent. Math., 70 (1982), 219–288 | DOI | MR | Zbl

[7] D. Goldfeld, P. Sarnak, “Sums of Kloosterman Sums”, Invent. Math., 71 (1983), 243–250 | DOI | MR | Zbl

[8] A. I. Vinogradov, “O gipoteze Linnika”, Zap. nauchn. semin. POMI, 265, 1999, 64–76 | MR | Zbl

[9] A. I. Vinogradov, “$Z$-funktsiya Selberga. Lokalnyi podkhod”, Zap. nauchn. semin. POMI, 260, 1999, 298–316 | MR | Zbl