The Hilbert pairing for formal groups over $\sigma$-rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 5-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper formal groups over the rings of integers of $\sigma$-fields are studied. These fields were constructed by the first-named author in the preceding paper. They are a generalisation of the inertia field of a classical local field to arbitrary complete discrete valuation field of characteristic zero. An analogue of Honda's theory for such formal groups is constructed. The arithmetic of the group of points in an extension of a $\sigma$-field that contains sufficiently many torsion points is studied. Using the classification of formal groups and the arithmetic results obtained an explicit formula for the Hilbert pairing for formal groups over $\sigma$-fields is proved.
@article{ZNSL_2004_319_a0,
     author = {M. V. Bondarko and S. V. Vostokov and F. Lorenz},
     title = {The {Hilbert} pairing for formal groups over $\sigma$-rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--58},
     year = {2004},
     volume = {319},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a0/}
}
TY  - JOUR
AU  - M. V. Bondarko
AU  - S. V. Vostokov
AU  - F. Lorenz
TI  - The Hilbert pairing for formal groups over $\sigma$-rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 5
EP  - 58
VL  - 319
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a0/
LA  - ru
ID  - ZNSL_2004_319_a0
ER  - 
%0 Journal Article
%A M. V. Bondarko
%A S. V. Vostokov
%A F. Lorenz
%T The Hilbert pairing for formal groups over $\sigma$-rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 5-58
%V 319
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a0/
%G ru
%F ZNSL_2004_319_a0
M. V. Bondarko; S. V. Vostokov; F. Lorenz. The Hilbert pairing for formal groups over $\sigma$-rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 11, Tome 319 (2004), pp. 5-58. http://geodesic.mathdoc.fr/item/ZNSL_2004_319_a0/

[1] F. Lorenz, S. Vostokov, “Honda groups and explicit pairings on the modules of Cartier curves”, Contemporary Mathematics, 300 (2002), 143–170 | MR | Zbl

[2] S. V. Vostokov, F. Lorents, “Yavnaya formula simvola Gilberta dlya grupp Khondy v mnogomernom lokalnom pole”, Matem. sbornik, 192:2 (2003), 3–36 | MR

[3] I. Fesenko, S. Vostokov, Local fields and their extensions: A constructive aproach, second edition, AMS, Providence, RI, 2001 | MR

[4] T. Honda, “On the theory of commutative formal groups”, J. Math. Soc. Japan, 22 (1970), 213–243 | DOI | MR

[5] M. Hazewinkel, Formal groups and applications, Acad. Press, New York, 1978 | MR | Zbl

[6] O. V. Demchenko, “Novoe v otnosheniyakh formalnykh grupp Lyubina–Teita i formalnykh grupp Khondy”, Algebra i analiz, 10:5 (1998), 77–84 | MR | Zbl

[7] S. V. Vostokov, “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR. Ser. matem., 42:6 (1978), 1288–1321 | MR | Zbl

[8] S. V. Vostokov, “Normennoe sparivanie v formalnykh modulyakh”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 765–794 | MR | Zbl

[9] S. V. Vostokov, “Yavnaya konstruktsiya teorii polei klassov dlya mnogomernogo lokalnogo polya”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 283–308 | MR

[10] Yu. I. Manin, “Krugovye polya i modulyarnye krivye”, UMN, 26:6 (1971), 7–78 | MR

[11] S. V. Vostokov, I. B. Zhukov, I. B. Fesenko, “K teorii mnogomernykh lokalnykh polei. Metody i konstruktsii”, Algebra i analiz, 2:4 (1990), 91–118 | MR | Zbl

[12] V. G. Benua, S. V. Vostokov, “Arifmetika gruppy tochek formalnoi gruppy”, Zap. nauchn. semin. LOMI, 191, 1991, 9–23

[13] S. V. Vostokov, “Simvoly na formalnykh gruppakh”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 765–794 | MR | Zbl

[14] O. V. Demchenko, “Formalnye gruppy Khondy. Arifmetika gruppy tochek”, Algebra i analiz, 12:1 (2000), 132–149 | MR | Zbl

[15] Dzh. Milnor, Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, Moskva, 1974 | MR