Non blow-up of the 3D ideal magnetohydrodynamics equations for a class of three-dimensional initial data in cylindrical domains
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 203-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Non blow-up of the 3D ideal incompressible magnetohydrodynamics (MHD) equations is proven for a class of three-dimensional initial data characterized by both uniformly large vorticity and magnetic field in bounded cylindrical domains. There are no conditional assumptions on the properties of solutions at later times, nor are the global solutions close to some 2D manifold. The approach of proving regularity is based on investigation of fast singular oscillating limits and nonlinear averaging methods in the context of almost periodic functions. We establish the global regularity of the 3D limit resonant MHD equations without any restriction on the size of 3D initial data. After establishing strong convergence to the limit resonant equations, we bootstrap this into the regularity on arbitrary large time intervals of the solutions of 3D MHD Equations with weakly aligned uniformly large vorticity and magnetic field at $t=0$.
@article{ZNSL_2004_318_a9,
     author = {A. S. Makhalov and B. Nicolaenko and F. Golse},
     title = {Non blow-up of the {3D} ideal magnetohydrodynamics equations for a~class of three-dimensional initial data in cylindrical domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--219},
     year = {2004},
     volume = {318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a9/}
}
TY  - JOUR
AU  - A. S. Makhalov
AU  - B. Nicolaenko
AU  - F. Golse
TI  - Non blow-up of the 3D ideal magnetohydrodynamics equations for a class of three-dimensional initial data in cylindrical domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 203
EP  - 219
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a9/
LA  - en
ID  - ZNSL_2004_318_a9
ER  - 
%0 Journal Article
%A A. S. Makhalov
%A B. Nicolaenko
%A F. Golse
%T Non blow-up of the 3D ideal magnetohydrodynamics equations for a class of three-dimensional initial data in cylindrical domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 203-219
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a9/
%G en
%F ZNSL_2004_318_a9
A. S. Makhalov; B. Nicolaenko; F. Golse. Non blow-up of the 3D ideal magnetohydrodynamics equations for a class of three-dimensional initial data in cylindrical domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 203-219. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a9/

[1] V. I. Arnold, “Small denominators. I: Mappings of the circumference onto itself”, Amer. Math. Soc. Transl. Ser. 2, 46, 1965, 213–284

[2] V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125, Springer, 1997 | MR

[3] A. Babin, A. Mahalov, B. Nicolaenko, “Global regularity and integrability of 3D Euler and Navier-Stokes equations for uniformly rotating fluids”, Asymptotic Analysis, 15 (1997), 103–150 | MR | Zbl

[4] A. Babin, A. Mahalov, B. Nicolaenko, “Global regularity of 3D rotating Navier-Stokes equations for resonant domains”, Indiana Univ. Math. J., 48:3 (1999), 1133–1176 | MR | Zbl

[5] A. Babin, A. Mahalov, B. Nicolaenko, “3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity”, Indiana Univ. Math. J., 50 (2001), 1–35 | MR | Zbl

[6] C. Bardos, F. Golse, A. Mahalov, B. Nicolaenko, “Long-time regularity of 3D Euler equations with initial data characterized by uniformly large vorticity in cylindrical domains”, 2005 (to appear)

[7] J. T. Beale, T. Kato, A. Majda, “Remarks on the breakdown of smooth solutions for the 3D Euler equations”, Commun. Math. Phys., 94 (1984), 61–66 | DOI | MR | Zbl

[8] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Pub. Co., New York, 1978 | MR

[9] A. S. Besicovitch, Almost Periodic Functions, Dover, New York, 1954 | MR

[10] D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge University Press, 1993 | MR

[11] N. N. Bogoliubov, Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-linear Oscillations, Gordon and Breach Science Publishers, New York, 1961 | MR

[12] J. P. Bourguignon, H. Brezis, “Remark on the Euler equations”, J. Func. Anal., 15 (1974), 341–363 | DOI | MR | Zbl

[13] E. B. Bykhovskii, “Solutions of problems of mixed type of the Maxwell's equations for ideally conducting boundaries”, Vestnik Leningrad Univ., 13 (1057), 50–66

[14] E. B. Bykhovskii, N. V. Smirnov, “On orthogonal expansions in spaces of square integrable vector functions and operators of vector analysis”, Trudy Math. Inst. V. A. Steklov, 59, 1960, 5–36, Special Volume on Mathematical Problems in Hydrodynamics and Magnetohydrodynamics | MR

[15] S. Childress, “New solutions of the kinematic dynamo problem”, J. Math. Phys., 11 (1970), 3063–3076 | DOI | MR

[16] C. Corduneanu, Almost periodic Functions, Wiley-Interscience, New York, 1968 | MR | Zbl

[17] S. Galtier, S. Nazarenko, A. C. Newell, A. Pouquet, “A weak turbulence theory for incompressible MHD”, J. Plasma Physics, 63 (2000), 447–488 | DOI

[18] T. Kato, “Nonstationary flows of viscous and ideal fluids in $R^3$”, J. Func. Anal., 9, 296–305 | DOI | MR | Zbl

[19] N. D. Kopachevsky, S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics, Operator Theory: Advances and Applications, 128, Birkhauser Verlag, 2001 | MR | Zbl

[20] O. A. Ladyzhenskaya (ed.), Special Volume on Mathematical Problems in Hydrodynamics and Magnetohydrodynamics, Trudy Math. Inst. V. A. Steklov, 59, 1960

[21] O. A. Ladyzhenskaya, “On the unique global solvability of the 3D Cauchy problem for the Navier–Stokes equations under conditions of axisymmetry”, Boundary Value problems of Math. Phys. and Related Problems, v. 2, Zapiski Seminarov LOMI, 7, 1968, 155–177 | MR | Zbl

[22] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd ed., Gordon and Breach, New York, 1969 | MR | Zbl

[23] O. A. Ladyzhenskaya, V. A. Solonnikov, “Solution of some nonstationary problems of magnetohydrodynamics for viscous incompressible fluids”, Special Volume on Mathematical Problems in Hydrodynamics and Magnetohydrodynamics, Trudy Math. Inst. V. A. Steklov, 59, 1960, 115–173 | MR

[24] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[25] A. Mahalov, B. Nicolaenko, “Global solvability of the three-dimensional Navier–Stokes equations with uniformly large initial vorticity”, Russian Math. Surveys, 58:2 (2003), 287–318 | DOI | MR

[26] A. Mahalov, B. Nicolaenko, C. Bardos, F. Golse, “Non blow-up of the 3D Euler equations for a class of three-dimensional initial data in cylindrical domains”, Methods Appl. Anal., 11:4 (2004), 605–634 | MR | Zbl

[27] H. Poincaré, “Sur la précession des corps déformables”, Bull. Astronomique, 27 (1910), 321–356

[28] H. Politano, A. Pouquet, P. L. Sulem, “Inertial ranges and resistive instabilities in 2D magnetohydrodynamic turbulence”, Physics of Fluids B, 1:12 (1989), 2330–2339 | DOI

[29] S. Schochet, “Resonant nonlinear geometric optics for weak solutions of conservation laws”, J. Diff. Eq., 113 (1994), 473–503 | DOI | MR

[30] S. Schochet, “Fast singular limits of hyperbolic PDE's”, J. Diff. Eq., 114 (1994), 476–512 | DOI | MR | Zbl

[31] P. G. Schmidt, “On a magnetohydrodynamic problem of Euler type”, J. Diff. Eq., 74:2 (1988), 318–335 | DOI | MR | Zbl

[32] P. Secchi, “On an initial value problem for the equations of ideal magnetohydrodynamics”, Math. Meth. in Appl. Sci., 18 (1995), 841–853 | DOI | MR | Zbl

[33] V. A. Solonnikov, “Overdetermined elliptic boundary value problems”, Boundary Value problems of Math. Phys. and Related Problems, V. 5, Zapiski Seminarov LOMI, 21, 1971, 112–158 | MR | Zbl

[34] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970 | MR

[35] W. Wolibner, “Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogéne et incompressible, pendant un temps infiniment long”, Mat. Z., 37 (1933), 698–726 | DOI | MR

[36] V. I. Yudovich, “Non stationary flow of an ideal incompressible liquid”, Zb. Vych. Mat., 3 (1963), 1032–1066 | MR | Zbl