On the $(x,t)$ asymptotic properties of solutions of the Navier–Stokes equations in the half-space
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 147-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the space-time asymptotic behavior of classical solutions of the initial boundary value problem for the Navier–Stokes system in the half-space. We construct a (local in time) solution corresponding to an initial data assumed only continuous and decreasing at infinity as $|x|^{-\mu}$, $\mu\in(\frac12,n)$. We prove pointwise estimates in the space variable. Moreover, if $\mu\in[1,n)$ and the initial data is suitably small, the above solutions in global (in time) and we prove space-time pointwise estimates.
@article{ZNSL_2004_318_a8,
     author = {F. Crispo and P. Maremonti},
     title = {On the $(x,t)$ asymptotic properties of solutions of the {Navier{\textendash}Stokes} equations in the half-space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--202},
     year = {2004},
     volume = {318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a8/}
}
TY  - JOUR
AU  - F. Crispo
AU  - P. Maremonti
TI  - On the $(x,t)$ asymptotic properties of solutions of the Navier–Stokes equations in the half-space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 147
EP  - 202
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a8/
LA  - en
ID  - ZNSL_2004_318_a8
ER  - 
%0 Journal Article
%A F. Crispo
%A P. Maremonti
%T On the $(x,t)$ asymptotic properties of solutions of the Navier–Stokes equations in the half-space
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 147-202
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a8/
%G en
%F ZNSL_2004_318_a8
F. Crispo; P. Maremonti. On the $(x,t)$ asymptotic properties of solutions of the Navier–Stokes equations in the half-space. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 147-202. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a8/

[1] E. B. Fabes, B. F. Jones, N. M. Riviere, “The Initial Value Problem for the Navier–Stokes Equations with Data in $L^p$”, Arch. Rational Mech. Anal., 45 (1972), 222–240 | DOI | MR | Zbl

[2] G. P. Galdi, H. Sohr, “Existence and Uniqueness of Time-Periodic Physically Reasonable Navier–Stokes Flow Past a Body” (to appear)

[3] Y. Giga, K. Inui, Sh. Matsui, “On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data”, Quad. Mat., 4 (1999), 27–68 | MR | Zbl

[4] G. H. Knightly, “On a class of global solutions of the Navier–Stokes equations”, Arch. Rational Mech. Anal., 21 (1966), 211–245 | DOI | MR | Zbl

[5] G. H. Knightly, “A Cauchy problem for the Navier–Stokes equations in $\mathbb{R}^n$”, SIAM J. Math. Anal., 3 (1972), 506–511 | DOI | MR | Zbl

[6] G. H. Knightly, “Some decay properties of solutions of the Navier–Stokes equations”, Approximations methods for Navier–Stokes problems, Lect. Notes Math., 771, Springer, 1980, 287–298 | MR

[7] H. Koch, V. A. Solonnikov, “$L_q$-Estimates of the first-order derivatives of solutions of the nonstationary Navier–Stokes equations”, Nonlinear Problems of Mathematical Physics and Related Topics, I. In Honor of Professor O. A. Ladyzhenskaya, International Mathematical Series, 1, Kluwer Academic/Plenum Publishers, New York, 2002, 203–218 | MR | Zbl

[8] O. A. Ladyzhenskaya, N. N. Ural'tzeva, Linear and quasi-linear equations of elliptic type, Academic Press, 1968 | Zbl

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tzeva, Linear and quasi-linear equations of parabolic type, Translation of Math. Monographs AMS, 23, 1968

[10] P. Maremonti, G. Starita, “On the nonstationary Stokes equations in half-space with continuous initial data”, Zap. Nauch. Sem. POMI, 295, 2003, 118–167 | MR | Zbl

[11] C. Miranda, Foundations of linear functional analysis. Volume I. Istituzioni di analisi funzionale lineare, Pitagora Editrice, Bologna, 1978 | Zbl

[12] T. Miyakawa, “Notes on space-time decay properties of nonstationary incompressible Navier–Stokes flows in $\mathbb{R}^n$”, Funkcial. Ekvac, 45 (2002), 271–289 | MR | Zbl

[13] R. Mizumachi, “On the asymptotic behavior of incompressible viscous fluid motions past bodies”, J. Math. Soc. Japan, 36 (1984), 497–522 | DOI | MR | Zbl

[14] C. W. Oseen, “Sur les formules de Green généralisées qui se presentent dans l'hydrodynamique et sur quelquesunes de leurs applications”, Acta Math., 34 (1910), 205–284 | DOI | MR

[15] C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsgesellschaft m.b.h., Leipzig, 1927 | Zbl

[16] V. A. Solonnikov, “Estimates for solutions of nonstationary Navier–Stokes equations”, J. Soviet Math., 8 (1977), 467–528 | DOI

[17] V. A. Solonnikov, “Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator”, Uspekhi Mat. Nauk, 58 (2003), 123–156 | MR | Zbl

[18] V. A. Solonnikov, “On nonstationary Stokes problem and Navier–Stokes problem in half-space with initial data nondecreasing at infinity”, J. Math. Sciences, 114 (2003), 1726–1740 | DOI | MR | Zbl

[19] S. Ukai, “A solution formula for the Stokes equation in $\mathbb{R}^n_+$”, Comm. Pure Appl. Math., 40 (1987), 611–621 | DOI | MR | Zbl