@article{ZNSL_2004_318_a8,
author = {F. Crispo and P. Maremonti},
title = {On the $(x,t)$ asymptotic properties of solutions of the {Navier{\textendash}Stokes} equations in the half-space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {147--202},
year = {2004},
volume = {318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a8/}
}
TY - JOUR AU - F. Crispo AU - P. Maremonti TI - On the $(x,t)$ asymptotic properties of solutions of the Navier–Stokes equations in the half-space JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 147 EP - 202 VL - 318 UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a8/ LA - en ID - ZNSL_2004_318_a8 ER -
F. Crispo; P. Maremonti. On the $(x,t)$ asymptotic properties of solutions of the Navier–Stokes equations in the half-space. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 147-202. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a8/
[1] E. B. Fabes, B. F. Jones, N. M. Riviere, “The Initial Value Problem for the Navier–Stokes Equations with Data in $L^p$”, Arch. Rational Mech. Anal., 45 (1972), 222–240 | DOI | MR | Zbl
[2] G. P. Galdi, H. Sohr, “Existence and Uniqueness of Time-Periodic Physically Reasonable Navier–Stokes Flow Past a Body” (to appear)
[3] Y. Giga, K. Inui, Sh. Matsui, “On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data”, Quad. Mat., 4 (1999), 27–68 | MR | Zbl
[4] G. H. Knightly, “On a class of global solutions of the Navier–Stokes equations”, Arch. Rational Mech. Anal., 21 (1966), 211–245 | DOI | MR | Zbl
[5] G. H. Knightly, “A Cauchy problem for the Navier–Stokes equations in $\mathbb{R}^n$”, SIAM J. Math. Anal., 3 (1972), 506–511 | DOI | MR | Zbl
[6] G. H. Knightly, “Some decay properties of solutions of the Navier–Stokes equations”, Approximations methods for Navier–Stokes problems, Lect. Notes Math., 771, Springer, 1980, 287–298 | MR
[7] H. Koch, V. A. Solonnikov, “$L_q$-Estimates of the first-order derivatives of solutions of the nonstationary Navier–Stokes equations”, Nonlinear Problems of Mathematical Physics and Related Topics, I. In Honor of Professor O. A. Ladyzhenskaya, International Mathematical Series, 1, Kluwer Academic/Plenum Publishers, New York, 2002, 203–218 | MR | Zbl
[8] O. A. Ladyzhenskaya, N. N. Ural'tzeva, Linear and quasi-linear equations of elliptic type, Academic Press, 1968 | Zbl
[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tzeva, Linear and quasi-linear equations of parabolic type, Translation of Math. Monographs AMS, 23, 1968
[10] P. Maremonti, G. Starita, “On the nonstationary Stokes equations in half-space with continuous initial data”, Zap. Nauch. Sem. POMI, 295, 2003, 118–167 | MR | Zbl
[11] C. Miranda, Foundations of linear functional analysis. Volume I. Istituzioni di analisi funzionale lineare, Pitagora Editrice, Bologna, 1978 | Zbl
[12] T. Miyakawa, “Notes on space-time decay properties of nonstationary incompressible Navier–Stokes flows in $\mathbb{R}^n$”, Funkcial. Ekvac, 45 (2002), 271–289 | MR | Zbl
[13] R. Mizumachi, “On the asymptotic behavior of incompressible viscous fluid motions past bodies”, J. Math. Soc. Japan, 36 (1984), 497–522 | DOI | MR | Zbl
[14] C. W. Oseen, “Sur les formules de Green généralisées qui se presentent dans l'hydrodynamique et sur quelquesunes de leurs applications”, Acta Math., 34 (1910), 205–284 | DOI | MR
[15] C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsgesellschaft m.b.h., Leipzig, 1927 | Zbl
[16] V. A. Solonnikov, “Estimates for solutions of nonstationary Navier–Stokes equations”, J. Soviet Math., 8 (1977), 467–528 | DOI
[17] V. A. Solonnikov, “Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator”, Uspekhi Mat. Nauk, 58 (2003), 123–156 | MR | Zbl
[18] V. A. Solonnikov, “On nonstationary Stokes problem and Navier–Stokes problem in half-space with initial data nondecreasing at infinity”, J. Math. Sciences, 114 (2003), 1726–1740 | DOI | MR | Zbl
[19] S. Ukai, “A solution formula for the Stokes equation in $\mathbb{R}^n_+$”, Comm. Pure Appl. Math., 40 (1987), 611–621 | DOI | MR | Zbl