Symmetry and geometric evolution equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 135-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper contains analytic description of geometric flows generated by nonlinear curvature functions in terms of invariant symmetric curvature matrix. Such approach provides the most efficient application of ideas and methods of the modern theory of fully nonlinear second order partial differential equations to the relevant geometric problems.
@article{ZNSL_2004_318_a7,
     author = {N. M. Ivochkina},
     title = {Symmetry and geometric evolution equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--146},
     year = {2004},
     volume = {318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a7/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - Symmetry and geometric evolution equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 135
EP  - 146
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a7/
LA  - en
ID  - ZNSL_2004_318_a7
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T Symmetry and geometric evolution equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 135-146
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a7/
%G en
%F ZNSL_2004_318_a7
N. M. Ivochkina. Symmetry and geometric evolution equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 135-146. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a7/

[1] G. Huisken, “Flow by mean curvature of convex hypersurfaces into spheres”, J. Diff. Geom., 20 (1984), 237–268 | MR

[2] K. Tso, “Deforming a hypersurface by its Gauss–Kronecker curvature”, Comm. Pure Appl. Math., 38 (1985), 867–882 | DOI | MR | Zbl

[3] N. M. Ivochkina, “On evolution laws forcing convex surfaces to shrink to a point”, Nonlinear Problems in Mathematical Physics and Related Topics I. In Honor of Professor O. A. Ladyzhenskaya, Kluwer Academic/Plenum Publishers New York, Boston, London, Moskow, 2002, 167–186 | MR | Zbl

[4] St.-Petersburg Math. J., 12 (2001), 145–160 | MR | Zbl

[5] B. Andrews, “Contraction of convex hypersurfaces in Euclidian space”, Calc. Var. Partial Differ. Equ., 2 (1994), 151–171 | DOI | MR | Zbl

[6] Reidel, Dordrecht, 1987 | MR | Zbl

[7] L. S. Evans, “Classical solutions of fully nonlinear, convex, second-order elliptic equations”, Comm. Pure Appl. Math., 25 (1987), 333–363 | MR

[8] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, Heidelberg, New York, 1983 | MR | Zbl

[9] J. Math. Sci., 92 (1998), 4302–4315 | DOI | MR | Zbl

[10] L. Caffarelli, L. Nirenberg, J. Spruck, “Nonlinear second-order elliptic equations. IV: Star-shaped compact Weingarten hypersurfaces”, Current topics in partial differential equations, Kinokunize Co., Tokyo, 1986, 1–26 | MR