@article{ZNSL_2004_318_a7,
author = {N. M. Ivochkina},
title = {Symmetry and geometric evolution equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--146},
year = {2004},
volume = {318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a7/}
}
N. M. Ivochkina. Symmetry and geometric evolution equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 135-146. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a7/
[1] G. Huisken, “Flow by mean curvature of convex hypersurfaces into spheres”, J. Diff. Geom., 20 (1984), 237–268 | MR
[2] K. Tso, “Deforming a hypersurface by its Gauss–Kronecker curvature”, Comm. Pure Appl. Math., 38 (1985), 867–882 | DOI | MR | Zbl
[3] N. M. Ivochkina, “On evolution laws forcing convex surfaces to shrink to a point”, Nonlinear Problems in Mathematical Physics and Related Topics I. In Honor of Professor O. A. Ladyzhenskaya, Kluwer Academic/Plenum Publishers New York, Boston, London, Moskow, 2002, 167–186 | MR | Zbl
[4] St.-Petersburg Math. J., 12 (2001), 145–160 | MR | Zbl
[5] B. Andrews, “Contraction of convex hypersurfaces in Euclidian space”, Calc. Var. Partial Differ. Equ., 2 (1994), 151–171 | DOI | MR | Zbl
[6] Reidel, Dordrecht, 1987 | MR | Zbl
[7] L. S. Evans, “Classical solutions of fully nonlinear, convex, second-order elliptic equations”, Comm. Pure Appl. Math., 25 (1987), 333–363 | MR
[8] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, Heidelberg, New York, 1983 | MR | Zbl
[9] J. Math. Sci., 92 (1998), 4302–4315 | DOI | MR | Zbl
[10] L. Caffarelli, L. Nirenberg, J. Spruck, “Nonlinear second-order elliptic equations. IV: Star-shaped compact Weingarten hypersurfaces”, Current topics in partial differential equations, Kinokunize Co., Tokyo, 1986, 1–26 | MR