On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 120-134
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is concerned with global in time behavior of solutions for a semi-linear hyperbolic inverse
source problem. We prove two types of results, the first is a global nonexistence result for smooth solutions when the data is chosen appropriately. The second type of result is on asymptotic stability of solutions when the integral
constraint vanishes as $t$ goes to infinity.
@article{ZNSL_2004_318_a6,
author = {A. Eden and V. K. Kalantarov},
title = {On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--134},
publisher = {mathdoc},
volume = {318},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a6/}
}
TY - JOUR AU - A. Eden AU - V. K. Kalantarov TI - On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 120 EP - 134 VL - 318 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a6/ LA - en ID - ZNSL_2004_318_a6 ER -
A. Eden; V. K. Kalantarov. On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 120-134. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a6/