On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 120-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is concerned with global in time behavior of solutions for a semi-linear hyperbolic inverse source problem. We prove two types of results, the first is a global nonexistence result for smooth solutions when the data is chosen appropriately. The second type of result is on asymptotic stability of solutions when the integral constraint vanishes as $t$ goes to infinity.
@article{ZNSL_2004_318_a6,
     author = {A. Eden and V. K. Kalantarov},
     title = {On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--134},
     year = {2004},
     volume = {318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a6/}
}
TY  - JOUR
AU  - A. Eden
AU  - V. K. Kalantarov
TI  - On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 120
EP  - 134
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a6/
LA  - en
ID  - ZNSL_2004_318_a6
ER  - 
%0 Journal Article
%A A. Eden
%A V. K. Kalantarov
%T On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 120-134
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a6/
%G en
%F ZNSL_2004_318_a6
A. Eden; V. K. Kalantarov. On global behavior of solutions to an inverse problem for semi-linear hyperbolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 120-134. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a6/

[1] V. Bayrak, M. Can, F. A. Aliyev, “Nonexistence of global solutions of a quasilinear hyperbolic equation”, Math. Inequal. Appl., 1:3 (1998), 367–374 | MR | Zbl

[2] Ya. Yu. Belov, T. N. Shipina, “The problem of determining the source function for a system of composite typer”, J. Inv. Ill-Posed Problems, 6:4 (1988), 287–308 | DOI | MR

[3] M. Can, S. R. Park, F. A. Aliyev, “Nonexistence of global solutions of some quasilinear hyperbolic equations”, J. Math. Anal. Appl., 213:2 (1997), 540–553 | DOI | MR | Zbl

[4] A. Eden, V. K. Kalantarov, “On global nonexistence of solutions to an inverse problem for semilinear parabolic equations”, J. Math. Anal. Appl., submitted

[5] D. Erdem, V. K. Kalantarov, “A remark on nonexistence of global solutions to quasi-linear hyperbolic and parabolic equations”, Appl. Math. Lett., 15:5 (2002), 521–653 | DOI | MR

[6] V. Georgiev, G. Todorova, “Existence of solution of the wave equation with nonlinear damping term”, J. Diff. Eqs., 109 (1994), 295–308 | DOI | MR | Zbl

[7] A. F. Guvenilir, V. K. Kalantarov, “The asymptotic behavior of solutions to an inverse problem for differential operator equations”, Math. Comp. Modelling, 37 (2003), 907–914 | DOI | MR

[8] Hu, Bei, Yin, Hong-Ming, “Semilinear parabolic equations with prescribed energy”, Rend. Circ. Mat. Palermo 2, 44:3 (1995), 479–505 | DOI | MR | Zbl

[9] V. K. Kalantarov, “Collapse of the solutions of parabolic and hyperbolic equations with nonlinear boundary conditions”, Zap. Nauchn. Semin. LOMI, 127, 1983, 75–83 | MR | Zbl

[10] V. K. Kalantarov, “Blow-up theorems for second order nonlinear evolutionary equations”, Turbulence modeling and vortex dynamics, Lect. Notes Phys., eds. O. Boratav, A. Eden, A. Erzan, Springer Verlag, 1997, 169–181 | MR | Zbl

[11] V. K. Kalantarov, O. A. Ladyzhenskaya, “Formation of collapses in quasilinear equations of parabolic and hyperbolic types”, Zap. Nauchn. Semin. LOMI, 69, 1977, 77–102 | MR | Zbl

[12] M. Kirane, N. Tatar, “A nonexistence result to a Cauchy problem in nonlinear one dimensional thermoelasticity”, J. Math. Anal. Appl., 254:1 (2001), 71–86 | DOI | MR | Zbl

[13] R. J. Knops, H. A. Levine, L. E. Payne, “Nonexistence, instability, and growth theorems for solutions of a class of abstract nonlinear equations with applications to nonlinear elastodynamics”, Arch. Rational Mech. Anal., 55 (1974), 52–72 | DOI | MR | Zbl

[14] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+F(u)$”, Trans. Am. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[15] H. A. Levine, “Some additional remarks on the nonexistence of global solutions to nonlinear wave equations”, SIAM J. Math. Anal., 5 (1974), 138–146 | DOI | MR | Zbl

[16] H. A. Levine, “A note on a nonexistence theorem for some nonlinear wave equations”, SIAM J. Math. Anal., 5 (1974), 644–648 | DOI | MR | Zbl

[17] H. A. Levine, L. E. Payne, “Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations”, J. Math. Anal. Appl., 55 (1976), 329–334 | DOI | MR | Zbl

[18] A. I. Prilepko, D. G. Orlovskii, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, Basel, 2000 | MR | Zbl

[19] Qin, Yuming, J. M. Rivera, “Blow-up of solutions to the Cauchy problem in nonlinear one-dimensional thermoelasticity”, J. Math. Anal. Appl., 292:1 (2004), 160–193 | DOI | MR | Zbl

[20] B. Straughan, “Further global nonexistence theorems for abstract nonlinear wave equations”, Proc. Amer. Math. Soc., 48 (1975), 381–390 | DOI | MR | Zbl

[21] I. A. Vasin, V. L. Kamynin, “On the asymptotic behavior of solutions to inverse problems for parabolic equations”, Sib. Math. J., 38:4 (1997), 750–766 | DOI | MR | Zbl

[22] Z. Yang, “Cauchy problem for quasi-linear wave equations with nonlinear damping and source terms”, J. Math. Anal. Appl., 300 (2004), 218–243 | DOI | MR | Zbl