@article{ZNSL_2004_318_a5,
author = {A. V. Demyanov},
title = {Lower semicontinuity of some functionals under the {PDE} constraints: $\mathcal{A}$-quasiconvex pair},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--119},
year = {2004},
volume = {318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a5/}
}
A. V. Demyanov. Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 100-119. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a5/
[1] E. Acerbi, N. Fusco, “Semicontinuity problems in the calculus of variations”, Arch. Rat. Mech. Anal, 86 (1984), 125–145 | DOI | MR | Zbl
[2] A. Braides, I. Fonseca, G. Francfort, “3D-2D asymptotic analysis for inhomogeneous thin films”, Indiana univ. Math. J., 49 (2000), 1367–1404 | DOI | MR | Zbl
[3] B. Dacorogna, Direct methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989 | MR
[4] A. Demyanov, “Quasiconvex pair: the necessary and sufficient condition for weak lower semicontinuity of some integral functionals”, J. Math. Sci., 124:3 (2004), 4941–4957 | DOI | MR
[5] H. Le Dret, A. Raoult, “Variational convergence for nonlinear shell models with directions and related semicontinuity and relaxation results”, Arch. Ration. Mech. Anal., 154:2 (2000), 101–134 | DOI | MR | Zbl
[6] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976 | MR | Zbl
[7] L. Evans, R. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992 | MR | Zbl
[8] I. Fonseca, S. Müller, “A-quasiconvexity, lower semicontinuity and Young measures”, SIAM J. Math. Anal., 30 (1999), 1355–1390 | DOI | MR | Zbl
[9] I. Fonseca, G. Francfort, “3D-2D asymptotic analysis of an optimal design problem for thin films”, J. Reine Angew. Math., 505 (1998), 173–202 | DOI | MR | Zbl
[10] I. Fonseca, D. Kinderlehrer, P. Pedregal, “Energy functionals depending on elastic strain and chemical composition”, Calc. Var. Partial Differential Equations, 2:3 (1994), 283–313 | DOI | MR | Zbl
[11] J. Kristensen, “Lower semicontinuity in spaces of weakly differentiable functions”, Math. Ann., 313 (1999), 653–710 | DOI | MR | Zbl
[12] V. Osmolovskii, “Criterion for the lower semicontinuity of the energy functional of a two-phase elastic medium”, J. Math. Sci., 117:3 (2003), 4211–4236 | DOI | MR | Zbl
[13] V. Osmolovskii, Variational problem of phase transitions in solid mechanics, St. Petersburg State University Press, St-Petersburg, 2000
[14] L. Tartar, “Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics”, Heriot-Watt Symposium, vol. IV, 39, ed. R. Knops, Pitman Res. Notes Math., 1979, 136–212 | MR