Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 100-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of establishing necessary and sufficient conditions for l.s.c. under the PDE constraints is studied for some special class of functionals: $$ (u,v,\chi)\mapsto\int_\Omega \biggl\{\chi(x)\cdot F^+(x,u(x),v(x))+(1-\chi(x))\cdot F^-(x,u(x),v(x))\biggr\}\,dx, $$ with respect to the convergence $u_n\to u$ in measure, $v_n\rightharpoonup v$ in $L_p(\Omega;\mathbb{R}^d)$, $\mathcal{A}v_n\to0$ in $W^{-1,p}(\Omega)$ and $\chi_n\rightharpoonup\chi$ in $L_p(\Omega)$, where $\chi_n\in Z:=\{\chi\in L_\infty(\Omega):0\leq\chi(x)\leq1,\text{ a.e. }x\}$. Here $\mathcal{A}v=\sum_{i=1}^N A^{(i)}\frac{\partial v}{\partial x_i}$ is a constant rank partial differential operator. The main result is that if the characteristic cone of $\mathcal{A}$ has the full dimension, then l.s.c. is equivalent to the fact that $F^\pm$ are both $\mathcal{A}$-quasiconvex and for a.e. $x\in\Omega$, for all $u\in\mathbb{R}^d$ $$ F^+(x,u,\cdot\,)-F^-(x,u,\cdot\,)\equiv C(x,u). $$ As a corollary, we obtain the results for the functional $$ (u,v,\chi)\mapsto\int_\Omega\chi(x)\cdot f(x,u(x),v(x))\,dx, $$ with respect to the same convergence. We show, that this functional is l.s.c. iff $$ f(x,u,v)\equiv g(x,u). $$
@article{ZNSL_2004_318_a5,
     author = {A. V. Demyanov},
     title = {Lower semicontinuity of some functionals under the {PDE} constraints: $\mathcal{A}$-quasiconvex pair},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--119},
     year = {2004},
     volume = {318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a5/}
}
TY  - JOUR
AU  - A. V. Demyanov
TI  - Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 100
EP  - 119
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a5/
LA  - en
ID  - ZNSL_2004_318_a5
ER  - 
%0 Journal Article
%A A. V. Demyanov
%T Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 100-119
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a5/
%G en
%F ZNSL_2004_318_a5
A. V. Demyanov. Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 100-119. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a5/

[1] E. Acerbi, N. Fusco, “Semicontinuity problems in the calculus of variations”, Arch. Rat. Mech. Anal, 86 (1984), 125–145 | DOI | MR | Zbl

[2] A. Braides, I. Fonseca, G. Francfort, “3D-2D asymptotic analysis for inhomogeneous thin films”, Indiana univ. Math. J., 49 (2000), 1367–1404 | DOI | MR | Zbl

[3] B. Dacorogna, Direct methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989 | MR

[4] A. Demyanov, “Quasiconvex pair: the necessary and sufficient condition for weak lower semicontinuity of some integral functionals”, J. Math. Sci., 124:3 (2004), 4941–4957 | DOI | MR

[5] H. Le Dret, A. Raoult, “Variational convergence for nonlinear shell models with directions and related semicontinuity and relaxation results”, Arch. Ration. Mech. Anal., 154:2 (2000), 101–134 | DOI | MR | Zbl

[6] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976 | MR | Zbl

[7] L. Evans, R. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992 | MR | Zbl

[8] I. Fonseca, S. Müller, “A-quasiconvexity, lower semicontinuity and Young measures”, SIAM J. Math. Anal., 30 (1999), 1355–1390 | DOI | MR | Zbl

[9] I. Fonseca, G. Francfort, “3D-2D asymptotic analysis of an optimal design problem for thin films”, J. Reine Angew. Math., 505 (1998), 173–202 | DOI | MR | Zbl

[10] I. Fonseca, D. Kinderlehrer, P. Pedregal, “Energy functionals depending on elastic strain and chemical composition”, Calc. Var. Partial Differential Equations, 2:3 (1994), 283–313 | DOI | MR | Zbl

[11] J. Kristensen, “Lower semicontinuity in spaces of weakly differentiable functions”, Math. Ann., 313 (1999), 653–710 | DOI | MR | Zbl

[12] V. Osmolovskii, “Criterion for the lower semicontinuity of the energy functional of a two-phase elastic medium”, J. Math. Sci., 117:3 (2003), 4211–4236 | DOI | MR | Zbl

[13] V. Osmolovskii, Variational problem of phase transitions in solid mechanics, St. Petersburg State University Press, St-Petersburg, 2000

[14] L. Tartar, “Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics”, Heriot-Watt Symposium, vol. IV, 39, ed. R. Knops, Pitman Res. Notes Math., 1979, 136–212 | MR