Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 100-119
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of establishing necessary and sufficient conditions for l.s.c. under the PDE constraints is studied for some special class of functionals:
$$
(u,v,\chi)\mapsto\int_\Omega \biggl\{\chi(x)\cdot F^+(x,u(x),v(x))+(1-\chi(x))\cdot F^-(x,u(x),v(x))\biggr\}\,dx,
$$
with respect to the convergence $u_n\to u$ in measure,
$v_n\rightharpoonup v$ in $L_p(\Omega;\mathbb{R}^d)$, $\mathcal{A}v_n\to0$ in $W^{-1,p}(\Omega)$ and $\chi_n\rightharpoonup\chi$ in $L_p(\Omega)$, where $\chi_n\in
Z:=\{\chi\in L_\infty(\Omega):0\leq\chi(x)\leq1,\text{ a.e. }x\}$.
Here $\mathcal{A}v=\sum_{i=1}^N A^{(i)}\frac{\partial v}{\partial x_i}$ is a constant rank partial differential operator.
The main result is that if the characteristic cone of $\mathcal{A}$ has the full dimension, then
l.s.c. is equivalent to the fact that $F^\pm$ are both $\mathcal{A}$-quasiconvex and for a.e. $x\in\Omega$, for all $u\in\mathbb{R}^d$
$$
F^+(x,u,\cdot\,)-F^-(x,u,\cdot\,)\equiv C(x,u).
$$
As a corollary, we obtain the results for the functional
$$
(u,v,\chi)\mapsto\int_\Omega\chi(x)\cdot f(x,u(x),v(x))\,dx,
$$
with respect to the same convergence. We show, that this functional is l.s.c. iff
$$
f(x,u,v)\equiv g(x,u).
$$
@article{ZNSL_2004_318_a5,
author = {A. V. Demyanov},
title = {Lower semicontinuity of some functionals under the {PDE} constraints: $\mathcal{A}$-quasiconvex pair},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--119},
publisher = {mathdoc},
volume = {318},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a5/}
}
TY - JOUR
AU - A. V. Demyanov
TI - Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2004
SP - 100
EP - 119
VL - 318
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a5/
LA - en
ID - ZNSL_2004_318_a5
ER -
A. V. Demyanov. Lower semicontinuity of some functionals under the PDE constraints: $\mathcal{A}$-quasiconvex pair. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 100-119. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a5/