Compatible discretizations of second-order elliptic problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 75-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Differential forms provide a powerful abstraction tool to encode the structure of many partial differential equation problems. Discrete differential forms offer the same possibility with regard to compatible discretizations of these problems, i.e., for finite-dimensional models that exhibit similar conservation properties and invariants. We consider the application of a discrete exterior calculus to the approximation of second-order elliptic boundary-value problems. We show that there exist three possible discretization patterns. In the context of finite element methods, two of these lead to familiar classes of discrete problems, while the third offers a novel perspective about least-squares variational principles, namely how they can arise from particular choices for discrete Hodge–$*$ operators.
@article{ZNSL_2004_318_a4,
     author = {P. Bochev and M. Gunzburger},
     title = {Compatible discretizations of second-order elliptic problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--99},
     year = {2004},
     volume = {318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a4/}
}
TY  - JOUR
AU  - P. Bochev
AU  - M. Gunzburger
TI  - Compatible discretizations of second-order elliptic problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 75
EP  - 99
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a4/
LA  - en
ID  - ZNSL_2004_318_a4
ER  - 
%0 Journal Article
%A P. Bochev
%A M. Gunzburger
%T Compatible discretizations of second-order elliptic problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 75-99
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a4/
%G en
%F ZNSL_2004_318_a4
P. Bochev; M. Gunzburger. Compatible discretizations of second-order elliptic problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 75-99. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a4/

[1] R. Albanese, R. Fresa, R. Martone, “An error based approach to the solution of the full Maxwell Equations”, IEEE Trans. Magnetics, 30:5 (1994), 2968–2971, September | DOI

[2] D. Arnold, Differential complexes and numerical stability, Proceedings of the International Congress of Mathematicians. Volume I: Plenary Lectures (Beijing 2002), Higher Education Press, Beijing, 2002 | MR | Zbl

[3] V. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1989 | MR

[4] P. Bochev, M. Gunzburger, “On least-squares finite elements for the Poisson equation and their connection to the Kelvin and Dirichlet principles”, SIAM J. Num. Anal. (to appear)

[5] P. Bochev, A. Robinson, “Matching algorithms with physics: exact sequences of finite element spaces”, Collected Lectures on the Preservation of Stability Under Discretization, eds. D. Estep, S. Tavener, SIAM, Philadelphia, 2001 | MR

[6] A. Bossavit, “A rationale for “edge-elements” in 3-D fields computations”, IEEE Trans. Mag., 24 (1988), 74–79 | DOI

[7] A. Bossavit, Computational Electromagnetism, Academic, 1998 | MR | Zbl

[8] A. Bossavit and J. Verite, “A mixed fem-biem method to solve 3-d eddy current problems”, IEEE Trans. Mag., 18 (1982), 431–435 | DOI

[9] F. Brezzi, D. Marini, I. Perugia, P. Di Barba, A. Savini, “A novel-field-based mixed formulation of magnetostatics”, IEEE Trans. Magnetics, 32:3 (1996), 635–638, May | DOI

[10] L. Demkowicz, P. Monk, L. Vardapetyan, W. Rachowicz, De Rham Diagram for $hp$-finite element spaces, TICAM Report 99-06, TICAM, University of Texas, Austin, 1999 | MR

[11] J. Douglas, J. Roberts, “Mixed finite element methods for second order elliptic problems”, Math. Appl. Comp., 1 (1982), 91–103 | MR | Zbl

[12] G. Fix, M. Gunzburger, R. Nicolaides, “On finite element methods of the least-squares type”, Comput. Math. Appl., 5 (1979), 87–98 | DOI | MR | Zbl

[13] G. Fix, M. Gunzburger, R. Nicolaides, “On mixed finite element methods for first-order elliptic systems”, Numer. Math., 37 (1981), 29–48 | DOI | MR | Zbl

[14] G. Forsythe, W. Wasow, Finite difference methods for partial differential equations, Wiley, New York, 1960 | MR | Zbl

[15] R. Hiptmair, “Canonical construction of finite element spaces”, Math. Comp., 68 (1999), 1325–1346 | DOI | MR | Zbl

[16] R. Hiptmair, “Discrete Hodge operators”, Numer. Math., 90 (2001), 265–289 | DOI | MR | Zbl

[17] J. Hyman, M. Shashkov, “Natural discretizations for the divergence, gradient and curl on logically rectangular grids”, Comput. Math. Appl., 33 (1997), 88–104 | DOI | MR

[18] J. Hyman, M. Shashkov, “Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids”, Appl. Num. Math., 25 (1997), 413–442 | DOI | MR | Zbl

[19] J. Hyman, M. Shashkov, “The orthogonal decomposition theorems for mimetic finite difference schemes”, SIAM J. Num. Anal., 36 (1999), 788–818 | DOI | MR

[20] C. Mattiussi, “An analysis of finite volume, finite element and finite difference methods using some concepts from algebraic topology”, J. Comp. Phys., 133 (1997), 289–309 | DOI | MR | Zbl

[21] R. Nicolaides, “Direct discretization of planar div-curl problems”, SIAM J. Numer. Anal., 29 (1992), 32–56 | DOI | MR | Zbl

[22] R. Nicolaides, X. Wu, “Covolume solutions of three-dimensional div-curl equations”, SIAM J. Num. Anal., 34 (1997), 2195–2203 | DOI | MR | Zbl

[23] I. Perugia, “A field-based mixed formulation for the two-dimensional magnetostatic problem”, SIAM J. Numer. Anal., 34:6 (1997), 2382–2391 | DOI | MR | Zbl

[24] T. Tarhasaari, L. Kettunen, A. Bossavit, “Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques”, IEEE Trans. Magnetics, 35:3 (1999), 1494–1497, May | DOI

[25] M. Taylor, Partial Differential Equations. Basic Theory, Springer, 1999 | MR

[26] F. L. Teixeira (ed.), Geometric Methods for Computational Electromagnetics, EMW Publishing, Cambridge, MA, 2001

[27] E. Tonti, “On the mathematical structure of a large class of physical theories”, Lincei, Rend. Sc. Fis. Mat. e Nat., 52 (1972), 51–56 | MR

[28] E. Tonti, “The algebraic-topological structure of physical theories”, Proc. Conf. on Symmetry, Similarity and Group Theoretic Meth. in Mech. (Calgari, Canada, 1974), 441–467

[29] S. Weintraub, Differential Forms. A Complement to Vector Calculus, Academic, 1997 | MR | Zbl

[30] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Ant. Propa, 14 (1966), 302–307 | DOI | Zbl