@article{ZNSL_2004_318_a4,
author = {P. Bochev and M. Gunzburger},
title = {Compatible discretizations of second-order elliptic problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {75--99},
year = {2004},
volume = {318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a4/}
}
P. Bochev; M. Gunzburger. Compatible discretizations of second-order elliptic problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 75-99. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a4/
[1] R. Albanese, R. Fresa, R. Martone, “An error based approach to the solution of the full Maxwell Equations”, IEEE Trans. Magnetics, 30:5 (1994), 2968–2971, September | DOI
[2] D. Arnold, Differential complexes and numerical stability, Proceedings of the International Congress of Mathematicians. Volume I: Plenary Lectures (Beijing 2002), Higher Education Press, Beijing, 2002 | MR | Zbl
[3] V. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1989 | MR
[4] P. Bochev, M. Gunzburger, “On least-squares finite elements for the Poisson equation and their connection to the Kelvin and Dirichlet principles”, SIAM J. Num. Anal. (to appear)
[5] P. Bochev, A. Robinson, “Matching algorithms with physics: exact sequences of finite element spaces”, Collected Lectures on the Preservation of Stability Under Discretization, eds. D. Estep, S. Tavener, SIAM, Philadelphia, 2001 | MR
[6] A. Bossavit, “A rationale for “edge-elements” in 3-D fields computations”, IEEE Trans. Mag., 24 (1988), 74–79 | DOI
[7] A. Bossavit, Computational Electromagnetism, Academic, 1998 | MR | Zbl
[8] A. Bossavit and J. Verite, “A mixed fem-biem method to solve 3-d eddy current problems”, IEEE Trans. Mag., 18 (1982), 431–435 | DOI
[9] F. Brezzi, D. Marini, I. Perugia, P. Di Barba, A. Savini, “A novel-field-based mixed formulation of magnetostatics”, IEEE Trans. Magnetics, 32:3 (1996), 635–638, May | DOI
[10] L. Demkowicz, P. Monk, L. Vardapetyan, W. Rachowicz, De Rham Diagram for $hp$-finite element spaces, TICAM Report 99-06, TICAM, University of Texas, Austin, 1999 | MR
[11] J. Douglas, J. Roberts, “Mixed finite element methods for second order elliptic problems”, Math. Appl. Comp., 1 (1982), 91–103 | MR | Zbl
[12] G. Fix, M. Gunzburger, R. Nicolaides, “On finite element methods of the least-squares type”, Comput. Math. Appl., 5 (1979), 87–98 | DOI | MR | Zbl
[13] G. Fix, M. Gunzburger, R. Nicolaides, “On mixed finite element methods for first-order elliptic systems”, Numer. Math., 37 (1981), 29–48 | DOI | MR | Zbl
[14] G. Forsythe, W. Wasow, Finite difference methods for partial differential equations, Wiley, New York, 1960 | MR | Zbl
[15] R. Hiptmair, “Canonical construction of finite element spaces”, Math. Comp., 68 (1999), 1325–1346 | DOI | MR | Zbl
[16] R. Hiptmair, “Discrete Hodge operators”, Numer. Math., 90 (2001), 265–289 | DOI | MR | Zbl
[17] J. Hyman, M. Shashkov, “Natural discretizations for the divergence, gradient and curl on logically rectangular grids”, Comput. Math. Appl., 33 (1997), 88–104 | DOI | MR
[18] J. Hyman, M. Shashkov, “Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids”, Appl. Num. Math., 25 (1997), 413–442 | DOI | MR | Zbl
[19] J. Hyman, M. Shashkov, “The orthogonal decomposition theorems for mimetic finite difference schemes”, SIAM J. Num. Anal., 36 (1999), 788–818 | DOI | MR
[20] C. Mattiussi, “An analysis of finite volume, finite element and finite difference methods using some concepts from algebraic topology”, J. Comp. Phys., 133 (1997), 289–309 | DOI | MR | Zbl
[21] R. Nicolaides, “Direct discretization of planar div-curl problems”, SIAM J. Numer. Anal., 29 (1992), 32–56 | DOI | MR | Zbl
[22] R. Nicolaides, X. Wu, “Covolume solutions of three-dimensional div-curl equations”, SIAM J. Num. Anal., 34 (1997), 2195–2203 | DOI | MR | Zbl
[23] I. Perugia, “A field-based mixed formulation for the two-dimensional magnetostatic problem”, SIAM J. Numer. Anal., 34:6 (1997), 2382–2391 | DOI | MR | Zbl
[24] T. Tarhasaari, L. Kettunen, A. Bossavit, “Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques”, IEEE Trans. Magnetics, 35:3 (1999), 1494–1497, May | DOI
[25] M. Taylor, Partial Differential Equations. Basic Theory, Springer, 1999 | MR
[26] F. L. Teixeira (ed.), Geometric Methods for Computational Electromagnetics, EMW Publishing, Cambridge, MA, 2001
[27] E. Tonti, “On the mathematical structure of a large class of physical theories”, Lincei, Rend. Sc. Fis. Mat. e Nat., 52 (1972), 51–56 | MR
[28] E. Tonti, “The algebraic-topological structure of physical theories”, Proc. Conf. on Symmetry, Similarity and Group Theoretic Meth. in Mech. (Calgari, Canada, 1974), 441–467
[29] S. Weintraub, Differential Forms. A Complement to Vector Calculus, Academic, 1997 | MR | Zbl
[30] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Ant. Propa, 14 (1966), 302–307 | DOI | Zbl