Compatible discretizations of second-order elliptic problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 75-99

Voir la notice de l'article provenant de la source Math-Net.Ru

Differential forms provide a powerful abstraction tool to encode the structure of many partial differential equation problems. Discrete differential forms offer the same possibility with regard to compatible discretizations of these problems, i.e., for finite-dimensional models that exhibit similar conservation properties and invariants. We consider the application of a discrete exterior calculus to the approximation of second-order elliptic boundary-value problems. We show that there exist three possible discretization patterns. In the context of finite element methods, two of these lead to familiar classes of discrete problems, while the third offers a novel perspective about least-squares variational principles, namely how they can arise from particular choices for discrete Hodge–$*$ operators.
@article{ZNSL_2004_318_a4,
     author = {P. Bochev and M. Gunzburger},
     title = {Compatible discretizations of second-order elliptic problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--99},
     publisher = {mathdoc},
     volume = {318},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a4/}
}
TY  - JOUR
AU  - P. Bochev
AU  - M. Gunzburger
TI  - Compatible discretizations of second-order elliptic problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 75
EP  - 99
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a4/
LA  - en
ID  - ZNSL_2004_318_a4
ER  - 
%0 Journal Article
%A P. Bochev
%A M. Gunzburger
%T Compatible discretizations of second-order elliptic problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 75-99
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a4/
%G en
%F ZNSL_2004_318_a4
P. Bochev; M. Gunzburger. Compatible discretizations of second-order elliptic problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 75-99. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a4/