Homogenization of a multidimensional periodic elliptic operator in a neighbourhood of the edge of the internal gap
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 60-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The homogenization procedure for a multidimensional periodic Schrödinger operator near the edge of an internal gap is discussed. Approximation for the resolvent in the small period limit, with respect to the operator norm in $L_2(\mathbb{R}^d)$, is obtained. This approximation contains oscillations, but in a simpler form than the resolvent of the initial operator.
@article{ZNSL_2004_318_a3,
     author = {M. Sh. Birman and T. A. Suslina},
     title = {Homogenization of a~multidimensional periodic elliptic operator in a~neighbourhood of the edge of the internal gap},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {60--74},
     year = {2004},
     volume = {318},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a3/}
}
TY  - JOUR
AU  - M. Sh. Birman
AU  - T. A. Suslina
TI  - Homogenization of a multidimensional periodic elliptic operator in a neighbourhood of the edge of the internal gap
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 60
EP  - 74
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a3/
LA  - ru
ID  - ZNSL_2004_318_a3
ER  - 
%0 Journal Article
%A M. Sh. Birman
%A T. A. Suslina
%T Homogenization of a multidimensional periodic elliptic operator in a neighbourhood of the edge of the internal gap
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 60-74
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a3/
%G ru
%F ZNSL_2004_318_a3
M. Sh. Birman; T. A. Suslina. Homogenization of a multidimensional periodic elliptic operator in a neighbourhood of the edge of the internal gap. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 60-74. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a3/

[1] M. Sh. Birman, “Diskretnyi spektr periodicheskogo operatora Shredingera, vozmuschennogo ubyvayuschim potentsialom”, Algebra i analiz, 8:1 (1996), 3–20 | MR

[2] M. Sh. Birman, “Diskretnyi spektr v lakunakh vozmuschennogo periodicheskogo operatora Shredingera. II: Neregulyarnye vozmuscheniya”, Algebra i analiz, 9:6 (1997), 62–89 | MR | Zbl

[3] M. Sh. Birman, “O protsedure usredneniya dlya periodicheskikh operatorov v okrestnosti kraya vnutrennei lakuny”, Algebra i analiz, 15:4 (2003), 61–71 | MR | Zbl

[4] M. Sh. Birman, M. Z. Solomyak, “Otsenki singulyarnykh chisel integralnykh operatorov”, Uspekhi mat. nauk, 32:1 (1977), 17–84 | MR | Zbl

[5] M. Sh. Birman, T. A. Suslina, “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Systems, Approximations, Singular Integral Operators and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl

[6] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[8] T. A. Suslina, “Diskretnyi spektr dvumernogo periodicheskogo ellipticheskogo operatora vtorogo poryadka, vozmuschennogo ubyvayuschim potentsialom. II: Vnutrennie lakuny”, Algebra i analiz, 15:2 (2003), 128–189 | MR | Zbl