@article{ZNSL_2004_318_a2,
author = {G. I. Bizhanova},
title = {On exact solutions of one-dimensional two phase free boundary problems for parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {42--59},
year = {2004},
volume = {318},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a2/}
}
G. I. Bizhanova. On exact solutions of one-dimensional two phase free boundary problems for parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 42-59. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a2/
[1] L. I. Rubinshtein, Problema Stefana, Zvaigzne, Riga, 1967 | MR
[2] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR
[3] N. N. Verigin, “Nagnetanie vyazhuschikh rastvorov v gornye porody v usloviyakh povysheniya prochnosti i nepronitsaemosti osnovanii gidrotekhnicheskikh sooruzhenii”, Izvestiya AN SSSR, 1952, no. 5, 674–687
[4] V. A. Florin, “Uplotnenie zemlyanoi sredy i filtratsiya pri peremennoi poristosti s uchetom vliyaniya svyazannoi vody”, Izvestiya AN SSSR. OTN, 1951, no. 1, 1625–1649
[5] A. Fridman, B. Hu, “The Stefan problem with kinetic condition at the free boundary”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19:1 (1992), 87–111 | MR
[6] I. G. Gëtts, A. M. Meirmanov, “Obobschennoe reshenie zadachi Stefana s kineticheskim pereokhlazhdeniem”, Sibirskii zhurnal industrialnoi matematiki, 3:1 (2000), 66–86 | MR | Zbl
[7] G. I. Bizhanova, A. Sarsekeeva, “On the solvability of free boundary problems with supercooling”, Far East Journal of Applied Mathematics, 15:2 (2004), 223–243 | MR | Zbl
[8] M. Abramovets, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR