On exact solutions of one-dimensional two phase free boundary problems for parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 42-59
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with auto-modelling solutions of one-dimensional two phase Stefan, Florin, and Verigin free boundary problems for parabolic equations whose initial and boundary data are not adjusted. It is shown that in the Stefan problem with “supercooling” a liquid can have a temperature less than the temperature of the phase transition, i.e., a liqued can be “supercooled” and solid “superheated.”
@article{ZNSL_2004_318_a2,
author = {G. I. Bizhanova},
title = {On exact solutions of one-dimensional two phase free boundary problems for parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {42--59},
publisher = {mathdoc},
volume = {318},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a2/}
}
TY - JOUR AU - G. I. Bizhanova TI - On exact solutions of one-dimensional two phase free boundary problems for parabolic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 42 EP - 59 VL - 318 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a2/ LA - ru ID - ZNSL_2004_318_a2 ER -
G. I. Bizhanova. On exact solutions of one-dimensional two phase free boundary problems for parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 42-59. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a2/