Absence of the singular continuous component in the spectrum of analytic direct integrals
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 298-307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a simple proof of the absence of the singular continuous component in the spectrum of self-adjoint operators representable as analytic direct integrals.
@article{ZNSL_2004_318_a14,
     author = {N. Filonov and A. V. Sobolev},
     title = {Absence of the singular continuous component in the spectrum of analytic direct integrals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {298--307},
     year = {2004},
     volume = {318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a14/}
}
TY  - JOUR
AU  - N. Filonov
AU  - A. V. Sobolev
TI  - Absence of the singular continuous component in the spectrum of analytic direct integrals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 298
EP  - 307
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a14/
LA  - en
ID  - ZNSL_2004_318_a14
ER  - 
%0 Journal Article
%A N. Filonov
%A A. V. Sobolev
%T Absence of the singular continuous component in the spectrum of analytic direct integrals
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 298-307
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a14/
%G en
%F ZNSL_2004_318_a14
N. Filonov; A. V. Sobolev. Absence of the singular continuous component in the spectrum of analytic direct integrals. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 298-307. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a14/

[1] St. Petersburg Math. J., 11:2 (2000), 203–232 | MR | Zbl

[2] J. Math. Science, 106:3 (2001), 3078–3086 | DOI | MR | Zbl

[3] N. Filonov, F. Klopp, “Absolute continuity of the spectrum of a Schrödinger operator with a potential which is periodic in some directions and decays in others”, Documenta Mathematica, 9 (2004), 107–121 | MR | Zbl

[4] C. Gérard, F. Nier, “The Mourre theory for analytically fibered operators”, J. Funct. Anal., 152:1 (1998), 202–219 | DOI | MR | Zbl

[5] R. Hempel, I. Herbst, “Bands and gaps for periodic magnetic Hamiltonians”, Operator Theory: Advances and Applications, 78, Birkhäuser, 1995, 175–184 | MR | Zbl

[6] P. Kuchment, Floquet theory for partial differential equations, Birkhäuser, Basel, 1993 | MR | Zbl

[7] St. Petersburg Math. J., 13:5 (2002), 859–891 | MR | Zbl