On instability of axially symmetric equilibrium figures of rotating viscous incompressible liquid
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 277-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that axially symmetric equilibrium figures of uniformly rotating viscous incompressible liquid are unstable when the second variation of the energy functional can take negative values.
@article{ZNSL_2004_318_a13,
     author = {V. A. Solonnikov},
     title = {On instability of axially symmetric equilibrium figures of rotating viscous incompressible liquid},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {277--297},
     year = {2004},
     volume = {318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a13/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - On instability of axially symmetric equilibrium figures of rotating viscous incompressible liquid
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 277
EP  - 297
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a13/
LA  - en
ID  - ZNSL_2004_318_a13
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T On instability of axially symmetric equilibrium figures of rotating viscous incompressible liquid
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 277-297
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a13/
%G en
%F ZNSL_2004_318_a13
V. A. Solonnikov. On instability of axially symmetric equilibrium figures of rotating viscous incompressible liquid. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 277-297. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a13/

[1] V. A. Solonnikov, “On non-stationary motion of a finite isolated mass of self-gravitating fluid”, Algebra Anal., 1 (1989), 207–249 | MR | Zbl

[2] M. Padula, V. A. Solonnikov, “Existence of non-steady flows of an incompressible viscous drop of fluid in a frame rotating with finite angular velocity”, Elliptic and parabolic problems, World Science Publishing, River Edge, NY, 2002, 180–203 | MR | Zbl

[3] V. A. Solonnikov, “Estimate of a generalized energy in the free boundary problem for viscous incompressible fluid”, Zap. Nauchn. Semin. POMI, 282, 2001, 216–243 | MR | Zbl

[4] V. A. Solonnikov, “On the problem of evolution of an isolated liquid mass”, Sovr. Math. Fund. Napravl., 3 (2003), 43–62 | MR

[5] V. A. Solonnikov, “On the stability of axially symmetric equilibrium figures of rotating viscous incompressible liquid”, Algebra Anal., 16:2 (2004), 120–153 | MR | Zbl

[6] V. A. Solonnikov, “On the stability of non-symmetric equilibrium figures of rotating viscous incompressible liquid”, Interfaces Free Bound., 6:4 (2004) | MR | Zbl

[7] A. M. Lyapunov, Sobranie tsochinenii, T. 3, Izdat. Akad. Nauk SSSR, M., 1959

[8] P. Appell, Figures d'equilibre d'une mass liquide homogéne en rotation, Paris, 1932 | Zbl

[9] V. A. Solonnikov, “On the justification of the quasistationary approximation in the problem of motion of a viscous capillary drop”, Interfaces Free Bound., 1 (1999), 125–173 | DOI | MR | Zbl

[10] V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions”, Mathematical aspects of evolving interfaces, Lecture Notes in Math., 182, eds. J. F. Rodrigues, P. L. Colli, Springer, 2003, 123–175 | MR

[11] V. A. Solonnikov, “Estimates for the resolvent of the operator appearing in the study of equilibrium figures of a rotating viscous incompressible liquid”, Problems Math. Anal., 29 (2004), 105–118 | MR | Zbl

[12] V. A. Solonnikov, “On linear stability and instability of equilibrium figures of uniformly rotating liquid”, Proc. Conf. on Elliptic and Parab. Problems, Taiwan, 2004 (to appear) | MR

[13] T. Nishida, Y. Teramoto, H. Yoshihara, “Global in time behavior of viscous surface waves: horizontally periodic motion”, J. Math. Kyoto Univ. (to appear) | MR

[14] O. A. Ladyzhenskaya, V. A. Solonnikov, “The linearization principle and invariant manifolds in problems of magnetohydrodynamics”, Zap. Nauchn. Semin., LOMI, 38, 1973, 46–93 | MR | Zbl