The solution of a~spectral problem for the curl and the Stokes operators with periodic boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 246-276

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the relations between eigenvalues and eigenfunctions of the curl operator and the Stokes operator (with periodic boundary condition) are considered. These relations show that the curl operator is a square root of the Stokes operator with $\nu=1$. The multiplicity of zero eigenvalue of the curl operator is infinite. The space $\mathbf{L}_2(Q,2\pi)$ is decomposed into a directe sum of the eigensubspaces of the operator curl. For any complex number $\lambda$, the equation $\operatorname{rot}\mathbf{u}+\lambda\mathbf{u}=\mathbf{f}$ and the Stokes equation $-\nu(\Delta v+\lambda^2v)+\nabla p=\mathbf{f}$, $\operatorname{div}v=0$, are solved.
@article{ZNSL_2004_318_a12,
     author = {R. S. Saks},
     title = {The solution of a~spectral problem for the curl and the {Stokes} operators with periodic boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {246--276},
     publisher = {mathdoc},
     volume = {318},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a12/}
}
TY  - JOUR
AU  - R. S. Saks
TI  - The solution of a~spectral problem for the curl and the Stokes operators with periodic boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 246
EP  - 276
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a12/
LA  - ru
ID  - ZNSL_2004_318_a12
ER  - 
%0 Journal Article
%A R. S. Saks
%T The solution of a~spectral problem for the curl and the Stokes operators with periodic boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 246-276
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a12/
%G ru
%F ZNSL_2004_318_a12
R. S. Saks. The solution of a~spectral problem for the curl and the Stokes operators with periodic boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 246-276. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a12/