The solution of a~spectral problem for the curl and the Stokes operators with periodic boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 246-276
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the relations between eigenvalues and eigenfunctions of the curl operator and the Stokes operator (with periodic boundary condition) are considered. These relations show that the curl operator is a square root of the Stokes operator with $\nu=1$. The multiplicity of zero eigenvalue of the curl operator is infinite. The space $\mathbf{L}_2(Q,2\pi)$ is decomposed into a directe sum of the eigensubspaces of the operator curl. For any complex number $\lambda$, the equation $\operatorname{rot}\mathbf{u}+\lambda\mathbf{u}=\mathbf{f}$ and the Stokes equation $-\nu(\Delta v+\lambda^2v)+\nabla p=\mathbf{f}$, $\operatorname{div}v=0$, are solved.
@article{ZNSL_2004_318_a12,
author = {R. S. Saks},
title = {The solution of a~spectral problem for the curl and the {Stokes} operators with periodic boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {246--276},
publisher = {mathdoc},
volume = {318},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a12/}
}
TY - JOUR AU - R. S. Saks TI - The solution of a~spectral problem for the curl and the Stokes operators with periodic boundary JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 246 EP - 276 VL - 318 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a12/ LA - ru ID - ZNSL_2004_318_a12 ER -
R. S. Saks. The solution of a~spectral problem for the curl and the Stokes operators with periodic boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 246-276. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a12/