@article{ZNSL_2004_318_a11,
author = {S. I. Repin},
title = {Local a~posteriori estimates for the {Stokes} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {233--245},
year = {2004},
volume = {318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a11/}
}
S. I. Repin. Local a posteriori estimates for the Stokes problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 233-245. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a11/
[1] M. Ainsworth, J. T. Oden, A posteriori error estimation in finite element analysis, Wiley, 2000 | MR | Zbl
[2] C. Carstensen, S. Bartels, “Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I: Low order conforming, nonconforming, and mixed FEM”, Math. Comp., 71:239 (2002), 945–969 | DOI | MR | Zbl
[3] W. Bangerth, R. Rannacher, Adaptive finite element methods for differential equations, Birkhäuser, Berlin, 2003 | MR | Zbl
[4] M. Feistauer, Mathematical methods in fluid dynamics, Longman, Harlow, 1993 | Zbl
[5] S. Korotov, P. Neittaanmaki, S. Repin, “A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery”, J. Numer. Math., 11:1 (2003), 33–59 | MR | Zbl
[6] M. Fuchs, G. A. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lect. Notes Math., 1749, 2000 | MR | Zbl
[7] Girault V., Raviart P. A., Finite element approximation of the Navier–Stokes equations, Lecture Notes Math., 749, 1979 | MR | Zbl
[8] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York, 1969 | MR | Zbl
[9] O. A. Ladyzhenskaya, On nonlinear problems of continuum mechanics, Proc. Internat. Congr. Math. (Moscow, 1966), Amer. Math. Soc. Transl. (2), 70, 1968 | Zbl
[10] O. A. Ladyzhenskaya, “On some modifications of the Navier–Stokes equations for large gradients of velocity”, Zap. Nauchn. Sem. LOMI, 7, 1968, 126–154 | MR | Zbl
[11] S. I. Repin, “A posteriori estimates in local norms”, J. Math. Sci., 124:3 (2004), 5026–5035 | DOI | MR | Zbl
[12] S. I. Repin, “Aposteriori estimates for the Stokes problem”, J. Math. Sci., 109:5 (2002), 1950–1964 | DOI | MR
[13] S. Repin, “Estimates of deviations for generalized Newtonian fluids”, Zap. Nauchn. Semin. POMI, 288, 2002, 178–203 | MR | Zbl
[14] S. Repin, “A posteriori estimates of the accuracy of approximate solutions of boundary-value problems with incompressibility condition”, Algebra Analiz, 16:5 (2004), 124–161 | MR | Zbl
[15] S. Repin, S. Sauter, A. Smolianski, “A posteriori error estimation for the Dirichlet problem with account of the error in approximation of boundary conditions”, Computing, 2003, no. 3, 147–168 | MR
[16] R. Verfürth, “A posteriori error estimators for the Stokes equations”, Numer. Math., 55 (1989), 309–326 | DOI | MR
[17] O. C. Zienkiewicz, J. Z. Zhu, “A simple error estimator and adaptive procedure for practical engineering analysis”, Internat. J. Numer. Meth. Engrg., 24 (1987), 337–357 | DOI | MR | Zbl