Dependence of equilibrium states of a two-phase elastic medium on temperature for a positive coefficient of surface tension
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 220-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, homogeneous two-phase elastic media are investigated under the condition that on the boundary it is given a certain deflection field. For such problems, the dependence of equilibrium states on the temperature is analyzed.
@article{ZNSL_2004_318_a10,
     author = {V. G. Osmolovskii},
     title = {Dependence of equilibrium states of a~two-phase elastic medium on temperature for a~positive coefficient of surface tension},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {220--232},
     year = {2004},
     volume = {318},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a10/}
}
TY  - JOUR
AU  - V. G. Osmolovskii
TI  - Dependence of equilibrium states of a two-phase elastic medium on temperature for a positive coefficient of surface tension
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 220
EP  - 232
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a10/
LA  - ru
ID  - ZNSL_2004_318_a10
ER  - 
%0 Journal Article
%A V. G. Osmolovskii
%T Dependence of equilibrium states of a two-phase elastic medium on temperature for a positive coefficient of surface tension
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 220-232
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a10/
%G ru
%F ZNSL_2004_318_a10
V. G. Osmolovskii. Dependence of equilibrium states of a two-phase elastic medium on temperature for a positive coefficient of surface tension. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 220-232. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a10/

[1] M. A. Grinfeld, Metody mekhaniki sploshnoi sredy v teorii fazovykh prevraschenii, Nauka, M., 1990 | MR

[2] V. G. Osmolovskii, “Teorema suschestvovaniya i slabaya forma uravnenii Lagranzha dlya variatsionnoi zadachi teorii fazovykh prevraschenii”, Sibirskii matematicheskii zhurnal, 36:4 (1994), 836–846

[3] V. G. Osmolovskii, “Zavisimost sostoyanii ravnovesiya dvukhfazovoi uprugoi sredy ot temperatury pri nulevom koeffitsiente poverkhnostnogo natyazheniya”, Problemy matematicheskogo analiza, 28, 2004, 96–104

[4] V. G. Osmolovskii, “Fazovye perekhody dlya modelei uprugoi sredy s ostatochnym napryazheniem”, Problemy matematicheskogo analiza, 17, 1997, 153–191 | Zbl

[5] V. G. Osmolovskii, Variatsionnaya zadacha o fazovykh perekhodakh v mekhanike sploshnoi sredy, Izd. S.-Pb. gos. universiteta, S.-Peterburg, 2000

[6] V. G. Osmolovskii, “Zavisimost kharaktera sostoyanii ravnovesiya dvukhfazovoi sredy ot parametrov zadachi”, Zap. nauchn. semin. POMI, 271, 2000, 175–187 | MR | Zbl

[7] M. Bildhauer, M. Fuchs, V. Osmolovskii, “The effect of a surface term on the distribution of phases in an elastic medium with a two-well elastic potencial”, Math. Meth. Appl. Sci., 2002, no. 25, 149–178 | DOI | MR | Zbl

[8] A. S. Mikhailov, V. S. Mikhailov, “Fazovye perekhody v mnogofazovykh sredakh”, Problemy matematicheskogo analiza, 20, 2000, 120–169

[9] V. G. Osmolovskii, “Zavisimost temperatury fazovykh perekhodov ot razmerov oblasti”, Zap. nauchn. semin. POMI, 310, 2004, 98–113 | MR | Zbl