@article{ZNSL_2004_318_a1,
author = {W.-J. Beyn and V. S. Kolezhuk and S. Yu. Pilyugin},
title = {Convergence of discretized attractors for parabolic equations on the line},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {14--41},
year = {2004},
volume = {318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a1/}
}
TY - JOUR AU - W.-J. Beyn AU - V. S. Kolezhuk AU - S. Yu. Pilyugin TI - Convergence of discretized attractors for parabolic equations on the line JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 14 EP - 41 VL - 318 UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a1/ LA - en ID - ZNSL_2004_318_a1 ER -
W.-J. Beyn; V. S. Kolezhuk; S. Yu. Pilyugin. Convergence of discretized attractors for parabolic equations on the line. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 14-41. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a1/
[1] A. V. Babin, M. I. Vishik, Attractors of Evolutionary Equations, Nauka, Moscow, 1989 | MR | Zbl
[2] A. V. Babin, M. I. Vishik, “Attractors of partial differential equations in an unbounded domain”, Proc. R. Soc. Edinburgh, Sect. A, 116 (1990), 221–243 | MR | Zbl
[3] W.-J. Beyn, S. Yu. Pilyugin, “Attractors of reaction diffusion systems on infinite lattices”, J. Dynam. Differ. Equat., 15 (2003), 485–515 | DOI | MR | Zbl
[4] W. -J. Beyn, V. S. Koleshuk, S. Yu. Pilyugin, Convergence of discretized attractors for parabolic equations on the line, Preprint 04-13, DFG Research Group “Spectral Analysis, Asymptotic Expansions and Stochastic Dynamics,” Univ. of Bielefeld, 2004
[5] D. Braess, Finite elements. Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, 2001 | MR | Zbl
[6] J. K. Hale, X. -B. Lin, G. Raugel, “Upper semicontinuity of attractors and partial differential equations”, Math. Comp., 50 (1988), 80–123 | DOI | MR
[7] V. S. Kolezhuk, Dynamical systems generated by parabolic equations on the line, Preprint DFG Research Group “Spectral Analysis, Asymptotic Expansions and Stochastic Dynamics,” Univ. of Bielefeld, 2004 | Zbl
[8] V. S. Kolezhuk, Properties of some operators in weighted function spaces, Preprint DFG Research Group “Spectral Analysis, Asymptotic Expansions and Stochastic Dynamics”, Univ. of Bielefeld, 2004 | Zbl
[9] O. A. Ladyzhenskaya, Globally stable difference schemes and their attractors, Preprint POMI P-5-91, St. Petersburg, 1991
[10] S. Larsson, Nonsmooth data error estimates with applications to the study of the long-time behavior of finite element solutions of semilinear parabolic problems, Preprint 1992-36, Dept. of Math., Chalmers Univ. of Technology, 1992
[11] A. Mielke, G. Schneider, “Attractors for modulation equations on unbounded domains – existence and comparison”, Nonlinearity, 8 (1995), 743–768 | DOI | MR | Zbl
[12] G. R. Sell, Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer, Berlin, Heidelberg, New York, 2002 | MR | Zbl
[13] A. Stuart, “Perturbation theory for infinite dimensional dynamical systems”, Theory and numerics of ordinary and partial differential equations (Leicester, 1994), Adv. Num. Anal., 4, Oxford University Press, 1995, 181–290 | MR