Convergence of discretized attractors for parabolic equations on the line
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 14-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show that, for a semilinear parabolic equation on the real line satisfying a dissipativity condition, global attractors of time-space discretizations converge (with respect to the Hausdorff semi-distance) to the attractor of the continuous system as the discretization steps tend to zero. The attractors considered correspond to pairs of function spaces (in the sense of Babin–Vishik) with weighted and locally uniform norms (taken from Mielke–Schneider) used for both the continuous and discrete systems.
@article{ZNSL_2004_318_a1,
     author = {W.-J. Beyn and V. S. Kolezhuk and S. Yu. Pilyugin},
     title = {Convergence of discretized attractors for parabolic equations on the line},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--41},
     year = {2004},
     volume = {318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a1/}
}
TY  - JOUR
AU  - W.-J. Beyn
AU  - V. S. Kolezhuk
AU  - S. Yu. Pilyugin
TI  - Convergence of discretized attractors for parabolic equations on the line
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 14
EP  - 41
VL  - 318
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a1/
LA  - en
ID  - ZNSL_2004_318_a1
ER  - 
%0 Journal Article
%A W.-J. Beyn
%A V. S. Kolezhuk
%A S. Yu. Pilyugin
%T Convergence of discretized attractors for parabolic equations on the line
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 14-41
%V 318
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a1/
%G en
%F ZNSL_2004_318_a1
W.-J. Beyn; V. S. Kolezhuk; S. Yu. Pilyugin. Convergence of discretized attractors for parabolic equations on the line. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 14-41. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a1/

[1] A. V. Babin, M. I. Vishik, Attractors of Evolutionary Equations, Nauka, Moscow, 1989 | MR | Zbl

[2] A. V. Babin, M. I. Vishik, “Attractors of partial differential equations in an unbounded domain”, Proc. R. Soc. Edinburgh, Sect. A, 116 (1990), 221–243 | MR | Zbl

[3] W.-J. Beyn, S. Yu. Pilyugin, “Attractors of reaction diffusion systems on infinite lattices”, J. Dynam. Differ. Equat., 15 (2003), 485–515 | DOI | MR | Zbl

[4] W. -J. Beyn, V. S. Koleshuk, S. Yu. Pilyugin, Convergence of discretized attractors for parabolic equations on the line, Preprint 04-13, DFG Research Group “Spectral Analysis, Asymptotic Expansions and Stochastic Dynamics,” Univ. of Bielefeld, 2004

[5] D. Braess, Finite elements. Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, 2001 | MR | Zbl

[6] J. K. Hale, X. -B. Lin, G. Raugel, “Upper semicontinuity of attractors and partial differential equations”, Math. Comp., 50 (1988), 80–123 | DOI | MR

[7] V. S. Kolezhuk, Dynamical systems generated by parabolic equations on the line, Preprint DFG Research Group “Spectral Analysis, Asymptotic Expansions and Stochastic Dynamics,” Univ. of Bielefeld, 2004 | Zbl

[8] V. S. Kolezhuk, Properties of some operators in weighted function spaces, Preprint DFG Research Group “Spectral Analysis, Asymptotic Expansions and Stochastic Dynamics”, Univ. of Bielefeld, 2004 | Zbl

[9] O. A. Ladyzhenskaya, Globally stable difference schemes and their attractors, Preprint POMI P-5-91, St. Petersburg, 1991

[10] S. Larsson, Nonsmooth data error estimates with applications to the study of the long-time behavior of finite element solutions of semilinear parabolic problems, Preprint 1992-36, Dept. of Math., Chalmers Univ. of Technology, 1992

[11] A. Mielke, G. Schneider, “Attractors for modulation equations on unbounded domains – existence and comparison”, Nonlinearity, 8 (1995), 743–768 | DOI | MR | Zbl

[12] G. R. Sell, Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer, Berlin, Heidelberg, New York, 2002 | MR | Zbl

[13] A. Stuart, “Perturbation theory for infinite dimensional dynamical systems”, Theory and numerics of ordinary and partial differential equations (Leicester, 1994), Adv. Num. Anal., 4, Oxford University Press, 1995, 181–290 | MR