Convergence of discretized attractors for parabolic equations on the line
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 14-41
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that, for a semilinear parabolic equation on the real line satisfying a dissipativity condition, global attractors of time-space discretizations converge (with respect to the Hausdorff semi-distance) to the attractor of the continuous system as the discretization steps tend to zero. The attractors considered correspond to pairs of function spaces (in the sense of Babin–Vishik) with weighted and locally uniform norms (taken from Mielke–Schneider) used for both the continuous and discrete systems.
@article{ZNSL_2004_318_a1,
author = {W.-J. Beyn and V. S. Kolezhuk and S. Yu. Pilyugin},
title = {Convergence of discretized attractors for parabolic equations on the line},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {14--41},
publisher = {mathdoc},
volume = {318},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a1/}
}
TY - JOUR AU - W.-J. Beyn AU - V. S. Kolezhuk AU - S. Yu. Pilyugin TI - Convergence of discretized attractors for parabolic equations on the line JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 14 EP - 41 VL - 318 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a1/ LA - en ID - ZNSL_2004_318_a1 ER -
W.-J. Beyn; V. S. Kolezhuk; S. Yu. Pilyugin. Convergence of discretized attractors for parabolic equations on the line. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 14-41. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a1/