On the smoothness of weak solutions of strong-nonlinear nondiagonal elliptic systems (the two-dimensional case)
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 5-13
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of strong-nonlinear elliptic systems with a nondiagonal principal matrix. Weak solvability
of the Dirichlet problem for such type systems was earlier proved by the author in the two-dimensional case. The solution constructed was smooth almost everywhere. Here we prove that this solution is a Hölder continuous function in the entire domain.
@article{ZNSL_2004_318_a0,
author = {A. A. Arkhipova},
title = {On the smoothness of weak solutions of strong-nonlinear nondiagonal elliptic systems (the two-dimensional case)},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--13},
publisher = {mathdoc},
volume = {318},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a0/}
}
TY - JOUR AU - A. A. Arkhipova TI - On the smoothness of weak solutions of strong-nonlinear nondiagonal elliptic systems (the two-dimensional case) JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 5 EP - 13 VL - 318 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a0/ LA - en ID - ZNSL_2004_318_a0 ER -
%0 Journal Article %A A. A. Arkhipova %T On the smoothness of weak solutions of strong-nonlinear nondiagonal elliptic systems (the two-dimensional case) %J Zapiski Nauchnykh Seminarov POMI %D 2004 %P 5-13 %V 318 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a0/ %G en %F ZNSL_2004_318_a0
A. A. Arkhipova. On the smoothness of weak solutions of strong-nonlinear nondiagonal elliptic systems (the two-dimensional case). Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Tome 318 (2004), pp. 5-13. http://geodesic.mathdoc.fr/item/ZNSL_2004_318_a0/