The solution of general KdV equation in a class of steplike functions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 174-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work laws of evolution of the scattering data of the Sturm–Liouville operator with potential being solution of general Korteweg–de Vries equation and general Korteweg–de Vries equation with a source in a class of steplike functions are deduced.
@article{ZNSL_2004_317_a9,
     author = {A. B. Khasanov and G. U. Urazboev},
     title = {The solution of general {KdV} equation in a~class of steplike functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--199},
     year = {2004},
     volume = {317},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a9/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - G. U. Urazboev
TI  - The solution of general KdV equation in a class of steplike functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 174
EP  - 199
VL  - 317
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a9/
LA  - ru
ID  - ZNSL_2004_317_a9
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A G. U. Urazboev
%T The solution of general KdV equation in a class of steplike functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 174-199
%V 317
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a9/
%G ru
%F ZNSL_2004_317_a9
A. B. Khasanov; G. U. Urazboev. The solution of general KdV equation in a class of steplike functions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 174-199. http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a9/

[1] G. S. Gardner, I. M. Green, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI

[2] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math, 21 (1968), 467–490 | DOI | MR | Zbl

[3] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61 (1971), 118–134 | MR

[4] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[5] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Ch. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[6] Dzh. Lem, Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR

[7] A. Nyuell, Obratnye preobrazovaniya rasseyaniya, Mir, M., 1983

[8] F. Kalodzhero, A. Degasperis, Spektralnye preobrazovaniya i solitony. Metody resheniya i issledovaniya nelineinykh evolyutsionnykh uravnenii, Mir, M., 1985 | MR

[9] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform – Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53 (1974), 249–315 | MR | Zbl

[10] V. K. Melnikov, “Integrable and nonintegrable cases of the Lax equations with a source”, TMF, 99 (1994), 471–477 | MR

[11] A. S. Fokas, M. J. Ablowitz, “Forced nonlinear evolution equations and the inverse scattering transforms”, SIAM Stud. Appl. Math., 80 (1989), 253–272 | MR | Zbl

[12] J. Leon, A. Latifi, “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A: Math. Gen., 23 (1990), 1385–1403 | DOI | MR | Zbl

[13] E. Ya. Khruslov, “Asimptotika resheniya zadachi Koshi dlya uravneniya Kortevega–de Friza s nachalnymi dannymi tipa stupenki”, Mat. sb., 99(141):2 (1976), 268–281

[14] A. V. Gurevich, L. P. Pitaevskii, “Raspad nachalnogo razryva v uravnenii Kortevega-de Friza”, Pisma v ZhETF, 17 (1973), 268–271

[15] G. U. Urazboev, A. B. Khasanov, “Ob integrirovanii uravneniya KdF s samosoglasovannym istochnikom pri nachalnykh dannykh tipa stupenki”, Trudy mezhdunarodnoi konferentsii “Simmetriya i differentsialnye uravneniya”, Krasnoyarsk, 2000, 248–251

[16] G. U. Urazboev, A. B. Khasanov, “Integrirovanie uravneniya Kortevega–de Friza s samosoglasovannym istochnikom pri nachalnykh dannykh tipa stupenki”, TMF, 129 (2001), 38–64 | MR

[17] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, Moskva, 1984 | MR

[18] V. S. Buslaev, V. L. Fomin, “K obratnoi zadache rasseyaniya dlya odnomernogo uravneniya Shredingera na vsei osi”, Vestn. LGU, Ser. matem., mekh., astron., 17 (1962), 56–64 | MR | Zbl

[19] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya, II”, Sovremennye problemy matematiki, 3, VINITI, Moskva, 1974, 93–180 | MR