@article{ZNSL_2004_317_a9,
author = {A. B. Khasanov and G. U. Urazboev},
title = {The solution of general {KdV} equation in a~class of steplike functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {174--199},
year = {2004},
volume = {317},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a9/}
}
A. B. Khasanov; G. U. Urazboev. The solution of general KdV equation in a class of steplike functions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 174-199. http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a9/
[1] G. S. Gardner, I. M. Green, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI
[2] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math, 21 (1968), 467–490 | DOI | MR | Zbl
[3] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61 (1971), 118–134 | MR
[4] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl
[5] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Ch. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR
[6] Dzh. Lem, Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR
[7] A. Nyuell, Obratnye preobrazovaniya rasseyaniya, Mir, M., 1983
[8] F. Kalodzhero, A. Degasperis, Spektralnye preobrazovaniya i solitony. Metody resheniya i issledovaniya nelineinykh evolyutsionnykh uravnenii, Mir, M., 1985 | MR
[9] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform – Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53 (1974), 249–315 | MR | Zbl
[10] V. K. Melnikov, “Integrable and nonintegrable cases of the Lax equations with a source”, TMF, 99 (1994), 471–477 | MR
[11] A. S. Fokas, M. J. Ablowitz, “Forced nonlinear evolution equations and the inverse scattering transforms”, SIAM Stud. Appl. Math., 80 (1989), 253–272 | MR | Zbl
[12] J. Leon, A. Latifi, “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A: Math. Gen., 23 (1990), 1385–1403 | DOI | MR | Zbl
[13] E. Ya. Khruslov, “Asimptotika resheniya zadachi Koshi dlya uravneniya Kortevega–de Friza s nachalnymi dannymi tipa stupenki”, Mat. sb., 99(141):2 (1976), 268–281
[14] A. V. Gurevich, L. P. Pitaevskii, “Raspad nachalnogo razryva v uravnenii Kortevega-de Friza”, Pisma v ZhETF, 17 (1973), 268–271
[15] G. U. Urazboev, A. B. Khasanov, “Ob integrirovanii uravneniya KdF s samosoglasovannym istochnikom pri nachalnykh dannykh tipa stupenki”, Trudy mezhdunarodnoi konferentsii “Simmetriya i differentsialnye uravneniya”, Krasnoyarsk, 2000, 248–251
[16] G. U. Urazboev, A. B. Khasanov, “Integrirovanie uravneniya Kortevega–de Friza s samosoglasovannym istochnikom pri nachalnykh dannykh tipa stupenki”, TMF, 129 (2001), 38–64 | MR
[17] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, Moskva, 1984 | MR
[18] V. S. Buslaev, V. L. Fomin, “K obratnoi zadache rasseyaniya dlya odnomernogo uravneniya Shredingera na vsei osi”, Vestn. LGU, Ser. matem., mekh., astron., 17 (1962), 56–64 | MR | Zbl
[19] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya, II”, Sovremennye problemy matematiki, 3, VINITI, Moskva, 1974, 93–180 | MR