@article{ZNSL_2004_317_a8,
author = {K. L. Malyshev},
title = {The condition of quasi-periodicity in imaginary time as a~constraint at the functional integration and the time-dependent {ZZ-correlator} of the {XX} {Heisenberg} magnet},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {142--173},
year = {2004},
volume = {317},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a8/}
}
TY - JOUR AU - K. L. Malyshev TI - The condition of quasi-periodicity in imaginary time as a constraint at the functional integration and the time-dependent ZZ-correlator of the XX Heisenberg magnet JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 142 EP - 173 VL - 317 UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a8/ LA - ru ID - ZNSL_2004_317_a8 ER -
%0 Journal Article %A K. L. Malyshev %T The condition of quasi-periodicity in imaginary time as a constraint at the functional integration and the time-dependent ZZ-correlator of the XX Heisenberg magnet %J Zapiski Nauchnykh Seminarov POMI %D 2004 %P 142-173 %V 317 %U http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a8/ %G ru %F ZNSL_2004_317_a8
K. L. Malyshev. The condition of quasi-periodicity in imaginary time as a constraint at the functional integration and the time-dependent ZZ-correlator of the XX Heisenberg magnet. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 142-173. http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a8/
[1] K. Malyshev, “Funktsionalnoe integrirovanie s “avtomorfnym” granichnym usloviem i korrelyatory tretikh komponent spinov v $XX$ modeli Geizenberga”, TMF, 136:2 (2003), 285–298 ; arXiv: /hep-th/0204007 | MR | Zbl
[2] C. Malyshev, “Functional integration with “automorphic” boundary conditions and correlators of z-components of spins in the XY and XX Heisenberg chains”, New Developments in Mathematical Physics Research, ed. Charles V. Benton, Nova Science Publishers, New York, 2004, 85–116 ; arXiv: /math-ph/0405009 | MR
[3] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[4] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, “Temperature correlation functions in the $XXO$ Heisenberg chain, I”, Teor. Mat. Fiz., 94:1 (1993), 19–51 | MR
[5] F. H. L. Eßler, H. Frahm, A. G. Izergin, V. E. Korepin, “Determinant representation for correlation functions of spin-1/2 $XXX$ and $XXZ$ Heisenberg magnets”, Comm. Math. Phys., 174:1 (1995), 191–214 | DOI | MR
[6] A. G. Izergin, N. A. Kitanin, N. A. Slavnov, “O korrelyatsionnykh funktsiyakh $XY$-modeli”, Zap. nauchn. semin. POMI, 224 (1995), 178–191 | MR
[7] A. G. Izergin, V. S. Kapitonov, N. A. Kitanin, “Odnovremennye temperaturnye korrelyatory odnomernoi $XY$-tsepochki Geizenberga”, Zap. nauchn. semin. POMI, 245, 1997, 173–206 ; arXiv: /solv-int/9710028 | MR | Zbl
[8] N. Kitanine, J. M. Maillet, N. Slavnov, V. Terras, “Spin-spin correlation functions of the $XXZ$-$\frac12$ Heisenberg chain in a magnetic field”, Nucl. Phys. B, 641:3 (2002), 487–518 | DOI | MR | Zbl
[9] N. Kitanine, J. M. Maillet, N. Slavnov, V. Terras, “Correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain at the free fermion point from their multiple integral representations”, Nucl. Phys. B, 642:3 (2002), 433–455 | DOI | MR | Zbl
[10] E. Lieb, T. Schultz, D. Mattis, “Two soluble models of an antiferromagnetic chain”, Ann. Phys., 16:3 (1961), 407–466 | DOI | MR | Zbl
[11] Th. Niemeijer, “Some exact calculations on a chain of spins 1/2, I, II”, Physica, 36:3 (1967), 377–419 ; 39:3 (1968), 313–326 | DOI | DOI
[12] V. N. Popov, V. S. Yarunin, Collective Effects in Quantum Statistics of Radiation and Matter, Kluwer, Dordrecht, 1988
[13] L. Alvarez-Gaumé, “Supersymmetry and index theory”, Supersymmetry, NATO ASI Ser., 125, eds. K. Dietz et. al., Plenum Press, New York, 1985, 1–44 | MR
[14] V. N. Popov, S. A. Fedotov, “Metod funktsionalnogo integrirovaniya i diagrammnaya tekhnika dlya spinovykh sistem”, Zhurn. Eksp. Teor. Fiz., 94:3 (1988), 183–194
[15] S. Katsura, T. Horiguchi, M. Suzuki, “Dynamical properties of the isotropic XY model”, Physica, 46:1 (1970), 67–86 | DOI | MR
[16] P. Mazur, Th. J. Siskens, “Time correlation functions in the a-cyclic XY model, I”, Physica, 69:1 (1973), 259–272 | DOI
[17] J. H. H. Perk, H. W. Capel, “Time-dependent $xx$-correlation functions in the one dimensional $XY$-model”, Physica A, 89:2 (1977), 265–303 | DOI | MR
[18] G. Müller, R. E. Shrock, “Dynamic correlation functions for one-dimensional quantum spin systems: New results based on a rigorous approach”, Phys. Rev. B, 29:1 (1984), 288–301 | DOI | MR
[19] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, Moskva, 1986 | MR | Zbl
[20] A. M. Polyakov, Gauge Fields and Strings, Harwood Academic Publishers, London, 1987 | MR
[21] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin, 1966 | MR
[22] S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge, 1999 | MR
[23] F. Colomo, A. G. Izergin, V. Tognetti, “Correlation functions in the XXO Heisenberg chain and their relations with spectral shapes”, J. Phys. A: Math. Gen., 30:2 (1977), 361–370 | DOI | MR
[24] B.-Q. Jin, V. E. Korepin, “Entanglement, Toeplitz determinants and Fisher–Hartwig conjecture”, J. Stat. Phys., 116:1–4 (2004), 79–95 ; arXiv: /quant-ph/0304108 | DOI | MR | Zbl
[25] B.-Q. Jin, V. E. Korepin, “Correlation functions in spin chains and information theory”, Phys. Rev. A, 69:6 (2004), 062314 ; ; A. R. Its, B.-Q. Jin, V. E. Korepin, “Entanglement in XY spin chain”, J. Phys. A: Math. Gen., 38 (2005), 2975–2990 ; arXiv: /quant-ph/0309188arXiv: /quant-ph/0409027 | DOI | DOI | MR | Zbl