Quadratic transformations for the third and fifth Painlevé equations
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 105-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Quadratic transformations for the third and fifth Painlevé equations are constructed via the method of $RS$-transformations. This method can be viewed as a prolongation of the quadratic transformations for the Painlevé equations to the associated linear ODEs, whose isomonodromy deformations are governed by the corresponding Painlevé equations.
@article{ZNSL_2004_317_a6,
     author = {A. V. Kitaev},
     title = {Quadratic transformations for the third and fifth {Painlev\'e} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--121},
     year = {2004},
     volume = {317},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a6/}
}
TY  - JOUR
AU  - A. V. Kitaev
TI  - Quadratic transformations for the third and fifth Painlevé equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 105
EP  - 121
VL  - 317
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a6/
LA  - ru
ID  - ZNSL_2004_317_a6
ER  - 
%0 Journal Article
%A A. V. Kitaev
%T Quadratic transformations for the third and fifth Painlevé equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 105-121
%V 317
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a6/
%G ru
%F ZNSL_2004_317_a6
A. V. Kitaev. Quadratic transformations for the third and fifth Painlevé equations. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 105-121. http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a6/

[1] A. V. Kitaev, “Special Functions of the Isomonodromy Type”, Acta Appl. Math., 64:1 (2000), 1–32 | DOI | MR | Zbl

[2] A. V. Kitaev, “Spetsialnye funktsii izomonodromnogo tipa, ratsionalnye preobrazovaniya spektralnogo parametra i algebraicheskie resheniya shestogo uravneniya Penleve”, Algebra i Analiz, 14:3 (2002), 121–139 | MR | Zbl

[3] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[4] A. V. Kitaev, “Quadratic transformations for the sixth Painlevé equation”, Lett. Math. Phys., 21 (1991), 105–111 | DOI | MR | Zbl

[5] Yu. I. Manin, “Sixth Painlevé equations, universal elliptic curve, and mirror of $\mathbb{P}^2$”, Geometry of Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 186, Providence, RI, 1998, 131–151 | MR | Zbl

[6] T. Tsuda, K. Okamoto, H. Sakai, Folding transformations of the Painlevé equations, University of Tokyo, Preprint UTMS 2003-42, 2003, 1–25 | MR

[7] A. V. Kitaev, “Grothendieck's Dessins d'Enfants, Their Deformations and Algebraic Solutions of the Sixth Painlevé and Gauss Hypergeometric Equations”, Algebra Analiz, 17:1 (2005), 224–275 | MR | Zbl

[8] A. I. Bobenko, U. Eitner, Painlevé Equations in the Differential Geometry of Surfaces, Lect. Notes Math., 1753, 2000 | MR | Zbl

[9] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Physica D, 2 (1981), 407–448 | DOI | MR | Zbl

[10] A. V. Kitaev, “Metod izomonodromnykh deformatsii i asimptotiki reshenii “polnogo” tretego uravneniya Penleve”, Matem. sbornik, 134:3 (1987), 421–444 | MR | Zbl

[11] V. I. Gromak, “O privodimosti uravnenii Penleve”, Differents. uravneniya, 11:2 (1975), 373–376 | MR | Zbl

[12] V. I. Gromak, “K teorii uravnenii Penleve”, Differents. uravneniya, 20:10 (1984), 1674–1683 | MR | Zbl

[13] A. V. Kitaev, A. H. Vartanian, “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation, I”, Inverse Problems, 20:4 (2004), 1165–1206 | DOI | MR | Zbl

[14] L. A. Bordag, A. V. Kitaev, Preobrazovanie reshenii tretego i pyatogo uravnenii Penleve i ikh chastnye resheniya, Soobscheniya OIYaI, Dubna: R5-85-740, 1985, 1–17 | MR

[15] N. S. Witte, “New transformations for Painlevé's third transcendent”, Proc. Amer. Math. Soc., 132:6 (2004), 1649–1658 | DOI | MR | Zbl