@article{ZNSL_2004_317_a6,
author = {A. V. Kitaev},
title = {Quadratic transformations for the third and fifth {Painlev\'e} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {105--121},
year = {2004},
volume = {317},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a6/}
}
A. V. Kitaev. Quadratic transformations for the third and fifth Painlevé equations. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 105-121. http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a6/
[1] A. V. Kitaev, “Special Functions of the Isomonodromy Type”, Acta Appl. Math., 64:1 (2000), 1–32 | DOI | MR | Zbl
[2] A. V. Kitaev, “Spetsialnye funktsii izomonodromnogo tipa, ratsionalnye preobrazovaniya spektralnogo parametra i algebraicheskie resheniya shestogo uravneniya Penleve”, Algebra i Analiz, 14:3 (2002), 121–139 | MR | Zbl
[3] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[4] A. V. Kitaev, “Quadratic transformations for the sixth Painlevé equation”, Lett. Math. Phys., 21 (1991), 105–111 | DOI | MR | Zbl
[5] Yu. I. Manin, “Sixth Painlevé equations, universal elliptic curve, and mirror of $\mathbb{P}^2$”, Geometry of Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 186, Providence, RI, 1998, 131–151 | MR | Zbl
[6] T. Tsuda, K. Okamoto, H. Sakai, Folding transformations of the Painlevé equations, University of Tokyo, Preprint UTMS 2003-42, 2003, 1–25 | MR
[7] A. V. Kitaev, “Grothendieck's Dessins d'Enfants, Their Deformations and Algebraic Solutions of the Sixth Painlevé and Gauss Hypergeometric Equations”, Algebra Analiz, 17:1 (2005), 224–275 | MR | Zbl
[8] A. I. Bobenko, U. Eitner, Painlevé Equations in the Differential Geometry of Surfaces, Lect. Notes Math., 1753, 2000 | MR | Zbl
[9] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Physica D, 2 (1981), 407–448 | DOI | MR | Zbl
[10] A. V. Kitaev, “Metod izomonodromnykh deformatsii i asimptotiki reshenii “polnogo” tretego uravneniya Penleve”, Matem. sbornik, 134:3 (1987), 421–444 | MR | Zbl
[11] V. I. Gromak, “O privodimosti uravnenii Penleve”, Differents. uravneniya, 11:2 (1975), 373–376 | MR | Zbl
[12] V. I. Gromak, “K teorii uravnenii Penleve”, Differents. uravneniya, 20:10 (1984), 1674–1683 | MR | Zbl
[13] A. V. Kitaev, A. H. Vartanian, “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation, I”, Inverse Problems, 20:4 (2004), 1165–1206 | DOI | MR | Zbl
[14] L. A. Bordag, A. V. Kitaev, Preobrazovanie reshenii tretego i pyatogo uravnenii Penleve i ikh chastnye resheniya, Soobscheniya OIYaI, Dubna: R5-85-740, 1985, 1–17 | MR
[15] N. S. Witte, “New transformations for Painlevé's third transcendent”, Proc. Amer. Math. Soc., 132:6 (2004), 1649–1658 | DOI | MR | Zbl