@article{ZNSL_2004_317_a4,
author = {V. V. Borzov and E. V. Damaskinsky},
title = {Generalized coherent states for oscillators connected with {Meixner} and {Meixner{\textendash}Pollachek} polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {66--93},
year = {2004},
volume = {317},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a4/}
}
TY - JOUR AU - V. V. Borzov AU - E. V. Damaskinsky TI - Generalized coherent states for oscillators connected with Meixner and Meixner–Pollachek polynomials JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 66 EP - 93 VL - 317 UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a4/ LA - ru ID - ZNSL_2004_317_a4 ER -
V. V. Borzov; E. V. Damaskinsky. Generalized coherent states for oscillators connected with Meixner and Meixner–Pollachek polynomials. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 66-93. http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a4/
[1] R. Floreanini, L. Vinet, “$q$-orthogonal polynomials and the oscillator quantum group”, Lett. Math. Phys., 22:1 (1991), 45–54 | DOI | MR | Zbl
[2] R. Floreanini, L. Vinet, Representations of quantum algebras and $q$-special functions, arXiv: /hep-th/9111023 | MR
[3] E. V. Damaskinskii, P. P. Kulish, “$q$-polinomy Ermita i $q$-ostsillyatory”, Zap. nauchn. semin. LOMI, 199, 1992, 81–90 | MR | Zbl
[4] Z. Chang, H.-Y. Guo, H. Yan, “The $q$-Hermite polynomial and the representations of Heisenberg and quantum Heisenberg algebra”, J. Phys. A, 25:6 (1992), 1517–1526 | DOI | MR
[5] R. Floreanini, J. Le Tourneaux, L. Vinet, “More on the $q$-oscillator algebra and $q$-orthogonal polynomials”, J. Phys. A, 28:10 (1994), L287–L294 ; arXiv: /math.CA/9504218 | DOI | MR
[6] R. Floreanini, J. Le Tourneaux, L. Vinet, “An algebraic interpretation of the continuous big $q$-Hermite polynomials”, J. Math. Phys., 36:9 (1995), 5091–5097 | DOI | MR | Zbl
[7] E. V. Damaskinsky, P. P. Kulish, “Irreducible representations of deformed oscillator algebra and $q$-special functions”, Intern. J. Mod. Phys. A, 12:1 (1996), 153–158 ; arXiv: /q-alg/9610002 | DOI | MR
[8] R. Hinterding, J. Wess, “$q$-deformed Hermite polinomials in $q$-quantum mechanics”, Z. Phys. C, 71 (1996), 533–537 ; arXiv: /math.QA/9803050 | DOI | MR
[9] H.-C. Fu, R. Sasaki, “Exponential and Laguerre squeezed states for $su(1,1)$ algebra and the Calogero–Sutherland model”, Phys. Rev. A, 53:6 (1996), 3836–3844 | DOI
[10] N. M. Atakishiyev, E. I. Jafarov, Sh. M. Nagiyev, K. B. Wolf, “Meixner oscillators”, Revista Mexicana de Fisica, 44:3 (1998), 235–244 ; arXiv: /math-ph/9807035 | MR
[11] A. Odzijewicz, “Quantum algebras and $q$–special functions related to coherent states maps of the disk”, Commun. Mat. Phys., 192 (1998), 183–215 | DOI | MR | Zbl
[12] J.-P. Gazeau, J. R. Klauder, “Coherent states for systems with discrete and continuous spectrum”, J. Phys. A, 32:1 (1999), 123–132 | DOI | MR | Zbl
[13] K. A. Penson, A. I. Solomon, “New generalized coherent states”, J. Math. Phys., 40:5 (1999), 2354–2363 | DOI | MR | Zbl
[14] X.-G. Wang, Coherent states, displaced number states and Laguerre polynomial states for $su(1,1)$ Lie algebra, arXiv: /quant-ph/0001002 | MR
[15] J.-P. Antoine, J.-P. Gazeau, P. Monceau, J. R. Klauder, K. A. Penson, “Temporally stable coherent states for infinite well and Pöschl–Teller potentials”, J. Math. Phys., 42 (2001), 2349–2386 ; arXiv: /math-ph/0012044 | DOI | MR
[16] J. R. Klauder, K. A. Penson, J.-M. Sixdeniers, “Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems”, Phys. Rev. A, 64:1 (2001), 013817 | DOI | MR
[17] V. V. Borzov, Generalized Hermite polynomials, arXiv: /math.QA/0101216 | MR
[18] A. Jellal, Coherent States for Generalized Laguerre Functions, arXiv: /hep-th/0109028 | MR
[19] A. Odzijewicz, M. Horowski, A. Tereszkiewicz, “Integrable multi-boson systems and orthogonal polynomials”, J. Phys. A, 34 (2001), 4353–4376 | DOI | MR | Zbl
[20] N. Cotfas, “Shape invariance, raising and lowering operators in hypergeometric type equations”, J. Phys. A, 35:44 (2002), 9355–9365 ; arXiv: /quant-ph/0206129 | DOI | MR | Zbl
[21] A. H. El Kinani, M. Daoud, “Generalized coherent and intelligent states for exact solvable quantum systems”, J. Math. Phys., 43 (2002), 714–33 ; arXiv: /math-ph/0312040 | DOI | MR
[22] T. Appl, D. H. Schiller, “Generalized Hypergeometric Coherent States”, J. Phys. A, 37:7 (2004), 2731–2750 ; arXiv: /quant-ph/0308013 | DOI | MR | Zbl
[23] S. T. Ali, J.-P. Antoine, J.-P. Gazeau, U. A. Mueller, “Coherent states and their generalizations: A mathematical overview”, Rev. Math. Phys., 7:7 (1995), 1013–1104 | DOI | MR | Zbl
[24] V. V. Dodonov, ““Nonclassical” states in quantum optics: a “squeezed” review of the first 75 years”, J. Opt. B, 4:1 (2002), R1–R33 | MR
[25] V. V. Borzov, E. V. Damaskinsky, P. P. Kulish, “Construction of the spectral measure for the deformed oscillator position operator in the case of undetermined Hamburger moment problem”, Reviews in Math. Phys., 12:5 (2000), 691–710 ; arXiv: /math.QA/9803089 | DOI | MR | Zbl
[26] V. V. Borzov, E. V. Damaskinsky, “Realization of the annihilation operator for an oscillator-like system by a differential operator and Hermite–Chihara polynomials”, Integral Transforms and Special Functions, 13:6 (2002), 547–554 ; arXiv: /math.QA/0101215 | DOI | MR | Zbl
[27] V. V. Borzov, E. V. Damaskinskii, “Kogerentnye sostoyaniya dlya ostsillyatora Lezhandra”, Zap. nauchn. semin. POMI, 285, 2002, 39–52 ; arXiv: /math.QA/0307187 | MR | Zbl
[28] V. V. Borzov, E. V. Damaskinskii, “Kogerentnye sostoyaniya i polinomy Chebysheva”, Matematicheskie idei P. L. Chebysheva i ikh prilozheniya k sovremennym problemam estestvoznaniya, sb. trudov mezhdunarodnoi konferentsii (Obninsk, 14–18 maya 2002)
[29] V. V. Borzov, E. V. Damaskinskii, Kogerentnye sostoyaniya i ortogonalnye mnogochleny, Trudy konferentsii “Den Difraktsii 2002”, SPb., 2002; arXiv: /math.QA/0209181
[30] V. V. Borzov, E. V. Damaskinskii, “Kogerentnye sostoyaniya Baruta–Zhirardello dlya ostsillyatora Gegenbauera”, Zap. nauchn. semin. POMI, 291, 2002, 43–63 | MR | Zbl
[31] V. V. Borzov, E. V. Damaskinsky, “Generalized Coherent states: A Novel Approach”, Zap. nauchn. semin. POMI, 300, 2003, 65–70 | MR
[32] V. V. Borzov, E. V. Damaskinsky, Generalized Coherent States for $q$-oscillator connected with $q$-Hermite Polynomials, Day on Diffraction 2003, SPb 2003
[33] V. V. Borzov, E. V. Damaskinskii, “Obobschennye kogerentnye sostoyaniya dlya $q$-ostsillyatora, assotsiirovannogo s diskretnymi $q$-polinomami Ermita”, Matemat. voprosy teorii rasprostraneniya voln, Zap. nauchn. POMI, 308, 2004, 48–66 | MR | Zbl
[34] V. V. Borzov, E. V. Damaskinskii, “Ostsillyatoro-podobnye sistemy, svyazannye s ortogonalnymi mnogochlenami, i ikh kogerentnye sostoyaniya”, Gravitatsiya, kosmologiya i elementarnye chastitsy, Sankt-Peterburg, 2004, 9–19
[35] V. V. Borzov, “Orthogonal polynomials and generalized oscillator algebras”, Integral Transf. and Special Funct., 12:2 (2001), 115–138 ; arXiv: /math.CA/0002226 | DOI | MR | Zbl
[36] A. O. Barut, L. Girardello, “New “Coherent States” Associated with Non-Compact Groups”, Commun. Math. Phys., 21:1 (1972), 41–55 | DOI | MR
[37] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, FM, M., 1987 | MR
[38] W. Hahn, “Über Orthogonalpolynome, die $q$-Differenzengleichungen genügen”, Math. Nachr., 2 (1949), 4–34 | DOI | MR | Zbl
[39] R. Koekoek, R. F. Swarttouw, The Askey sheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report No 94-05, Delft University of Technology, 1994 ; arXiv: /math.CA/9602214 | Zbl
[40] N. M. Atakishiyev, S. K. Suslov, “The Hahn and Meixner polynomials of an imaginary argument and some of their applications”, J. Phys., 18:10 (1985), 1583–1596 | MR
[41] R. A. Askey, “Continuous Hahn polynomials”, J. Phys. A, 18:16 (1985), L1017–L1019 | DOI | MR | Zbl
[42] C. M. Bender, L. R. Mead, S. S. Pinsky, “Continuous Hahn polynomials and the Heisenberg algebra”, J. Math. Phys., 28:3 (1987), 509–513 | DOI | MR | Zbl
[43] T. H. Koornwinder, “Meixner-Pollaczek polynomials and the Heizenberg algebra”, J. Math. Phys., 30:4 (1989), 767–769 | DOI | MR | Zbl
[44] J. Meixner, “Orthogonale Polynomsysteme mit einem besonderen Gestalt der erzeugenden Funktion”, J. London Math. Soc., 9 (1934), 6–13 | DOI
[45] F. Pollaczek, “Sur une generalisation des polynomes de Legendre”, C. R. Acad. Sci. Paris, 230 (1950), 1563 | MR | Zbl
[46] Sh. M. Nagiev, E. I. Jafarov, R. M. Imanov, “The Relativistic Linear Singular Oscillator”, J. Phys., 36:28 (2003), 7813–7824 ; arXiv: /math-ph/0302042 | MR
[47] N. M. Atakishiev, “Kvazipotentsialnye volnovye funktsii relyativistskogo garmonicheskogo ostsillyatora i mnogochleny Pollacheka”, TMF, 58:2 (1984), 254–260 | MR
[48] N. M. Atakishiev, K. B. Wolf, “Generalised coherent states for a relativistic model of the linear oscillator in a homogeneous external field”, Repts. Math. Phys., 27:3 (1989), 305–311 | DOI | MR | Zbl
[49] E. D. Kagramanov, R. M. Mir-Kasimov, Sh. M. Nagiev, “The covariant linear oscillator and generalized realization of the dynamical $su(1,1)$ symmetry algebra”, J. Math. Phys., 31:7 (1990), 1733–1738 | DOI | MR | Zbl
[50] R. M. Mir-Kasimov, “$SU_q(1,1)$ and relativistic oscillator”, J. Phys. A, 24:18 (1991), 4275–4282 | DOI | MR
[51] N. M. Atakishiev, Sh. M. Nagiev, K. B. Volf, “O funktsiyakh raspredeleniya Vignera dlya relyativistskogo lineinogo ostsillyatora”, TMF, 114:3 (1998), 410–425 | MR | Zbl
[52] N. M. Atakishiev, R. M. Mir-Kasimov, Sh. M. Nagiev, TMF, 44 (1980), 47–53 | MR
[53] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, vyp. 2, Nauka, FM, M., 1966
[54] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Izd.5-e, Nauka, M., 1971
[55] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, FM, M., 1961
[56] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Advances in Mathematics, 137, 1998, 82–203 | MR | Zbl