Spinor Bose condensate and $\mathrm{su}(1,1)$ Richardson model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 43-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A dilute gas of trapped bosonic atoms with hyperfine spin $F=1$ interacting with the classical laser field is considered. In the single mode approximation the Hamiltonian of the model may be expressed in terms of the boson realization of the $\mathrm{su}(1,1)$ algebra. The model is solved by the Algebraic Bethe Ansatz approach.
@article{ZNSL_2004_317_a2,
     author = {N. M. Bogolyubov},
     title = {Spinor {Bose} condensate and $\mathrm{su}(1,1)$ {Richardson} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--56},
     year = {2004},
     volume = {317},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a2/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
TI  - Spinor Bose condensate and $\mathrm{su}(1,1)$ Richardson model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 43
EP  - 56
VL  - 317
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a2/
LA  - ru
ID  - ZNSL_2004_317_a2
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%T Spinor Bose condensate and $\mathrm{su}(1,1)$ Richardson model
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 43-56
%V 317
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a2/
%G ru
%F ZNSL_2004_317_a2
N. M. Bogolyubov. Spinor Bose condensate and $\mathrm{su}(1,1)$ Richardson model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 43-56. http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a2/

[1] L.-M. Duan, J. I. Cirac, P. Zoller, “Quantum entanglement in spinor Bose–Einstein condensates”, Phys. Rev. A, 65 (2002), 033619 | DOI

[2] M. Zhang, K. Helmerson, L. You, “Entanglement and spin squeezing of Bose–Einstein-condensed atoms”, Phys. Rev., 68 (2003), 043622 | DOI

[3] XuBo Zou, K. Pahlke, W. Mathis, “Quantum entanglement of many atoms in spinor Bose–Einstein condensates”, Phys. Rev. A, 69 (2004), 053608 | DOI

[4] O. E. Mustecaplioglu, M. Zhang, S. Yi, L. You, C. P. Sun, “Dynamic fragmentation of a spinor Bose–Einstein condensate”, Phys. Rev. A, 68 (2003), 63616 | DOI

[5] C. K. Law, H. Pu, N. P. Bigelow, “Quantum spin mixing in spinor Bose–Einstein condensates”, Phys. Rev. Lett., 24 (1998), 5257–5261 | DOI

[6] P. P. Kulish,, “Mnogokomponentnoe nelineinoe uravnenie Shredingera s graduirovkoi”, DAN SSSR, 255 (1980), 323–326 | MR

[7] R. W. Richardson, “Exactly solvable many-boson model”, J. Math. Phys., 9 (1968), 1327–1344 | DOI

[8] N. M. Bogolyubov, “Tochnoe reshenie modeli trekh svyazannykh ostsillyatorov s shtarkovskoi nelineinostyu”, Zap. nauchn. semin. POMI, 224, 1995, 122–128 | MR | Zbl

[9] N. M. Bogolyubov, “Algebraicheskii anzats Bete i model Teivisa–Kammingsa”, Zap. nauchn. semin. POMI, 245, 1997, 66–79 | MR | Zbl

[10] A. Rybin, G. Kastelewicz, J. Timonen, N. Bogoliubov, “The $su(1,1)$ Tavis–Cummings model”, Journ. Phys. A, 31 (1998), 4705–4723 | DOI | MR | Zbl

[11] L. Amico, A. Di Lorenzo, A. Osterloh, “Integrable models for confined fermions: applications to metallic grains”, Phys. Rev. Lett., 86 (2001), 5759 | DOI | MR

[12] P. P. Kulish, N. Manojlovic, “Creation operators and Bethe vectors of the $\mathrm{osp}(1\vert2)$ Gaudin model”, J. Math. Phys., 42 (2001), 4757–4778 | DOI | MR | Zbl

[13] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, Moskva, 1992 | MR | Zbl

[14] M. Goden, Volnovaya funktsiya Bete, Mir, Moskva, 1987 | MR

[15] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, Moskva, 1976 | MR

[16] M. Zhang, S. Yi, L. You, Mean field ground state of a spin-1 condensate in a magnetic field, arXiv: /cond-mat/0306076