On isomorphism of integrable cases of the Euler equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 200-212

Voir la notice de l'article provenant de la source Math-Net.Ru

The Poisson maps between the Clebsch model and the Schottky system, two Steklov systems, the Kowalevski top and the Neumann system are considered. We prove that these non-canonical transformations of variables are the twisted Poisson maps, which completely define the corresponding pairs of integrable systems.
@article{ZNSL_2004_317_a10,
     author = {A. V. Tsiganov},
     title = {On isomorphism of integrable cases of the {Euler} equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--212},
     publisher = {mathdoc},
     volume = {317},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a10/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On isomorphism of integrable cases of the Euler equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 200
EP  - 212
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a10/
LA  - ru
ID  - ZNSL_2004_317_a10
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On isomorphism of integrable cases of the Euler equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 200-212
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a10/
%G ru
%F ZNSL_2004_317_a10
A. V. Tsiganov. On isomorphism of integrable cases of the Euler equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 200-212. http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a10/