On isomorphism of integrable cases of the Euler equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 200-212
Voir la notice de l'article provenant de la source Math-Net.Ru
The Poisson maps between the Clebsch model and the Schottky system, two Steklov systems, the Kowalevski top and the Neumann system are considered. We prove that these non-canonical transformations of variables are the twisted Poisson maps, which completely define the corresponding pairs of integrable systems.
@article{ZNSL_2004_317_a10,
author = {A. V. Tsiganov},
title = {On isomorphism of integrable cases of the {Euler} equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {200--212},
publisher = {mathdoc},
volume = {317},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a10/}
}
TY - JOUR AU - A. V. Tsiganov TI - On isomorphism of integrable cases of the Euler equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2004 SP - 200 EP - 212 VL - 317 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a10/ LA - ru ID - ZNSL_2004_317_a10 ER -
%0 Journal Article %A A. V. Tsiganov %T On isomorphism of integrable cases of the Euler equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$ %J Zapiski Nauchnykh Seminarov POMI %D 2004 %P 200-212 %V 317 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a10/ %G ru %F ZNSL_2004_317_a10
A. V. Tsiganov. On isomorphism of integrable cases of the Euler equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 200-212. http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a10/