On the vertex connectivity of a~relation in association scheme
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part IX, Tome 316 (2004), pp. 55-62

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for a sufficiently closed association scheme, the Brouwer conjecture on the coincidence of the vertex connectivity and the degree of any connected basis relation of it is true.
@article{ZNSL_2004_316_a3,
     author = {S. A. Evdokimov and I. N. Ponomarenko},
     title = {On the vertex connectivity of a~relation in association scheme},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {316},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_316_a3/}
}
TY  - JOUR
AU  - S. A. Evdokimov
AU  - I. N. Ponomarenko
TI  - On the vertex connectivity of a~relation in association scheme
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 55
EP  - 62
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_316_a3/
LA  - ru
ID  - ZNSL_2004_316_a3
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%A I. N. Ponomarenko
%T On the vertex connectivity of a~relation in association scheme
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 55-62
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_316_a3/
%G ru
%F ZNSL_2004_316_a3
S. A. Evdokimov; I. N. Ponomarenko. On the vertex connectivity of a~relation in association scheme. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part IX, Tome 316 (2004), pp. 55-62. http://geodesic.mathdoc.fr/item/ZNSL_2004_316_a3/