On the vertex connectivity of a relation in association scheme
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part IX, Tome 316 (2004), pp. 55-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that for a sufficiently closed association scheme, the Brouwer conjecture on the coincidence of the vertex connectivity and the degree of any connected basis relation of it is true.
@article{ZNSL_2004_316_a3,
     author = {S. A. Evdokimov and I. N. Ponomarenko},
     title = {On the vertex connectivity of a~relation in association scheme},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--62},
     year = {2004},
     volume = {316},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_316_a3/}
}
TY  - JOUR
AU  - S. A. Evdokimov
AU  - I. N. Ponomarenko
TI  - On the vertex connectivity of a relation in association scheme
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 55
EP  - 62
VL  - 316
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_316_a3/
LA  - ru
ID  - ZNSL_2004_316_a3
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%A I. N. Ponomarenko
%T On the vertex connectivity of a relation in association scheme
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 55-62
%V 316
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_316_a3/
%G ru
%F ZNSL_2004_316_a3
S. A. Evdokimov; I. N. Ponomarenko. On the vertex connectivity of a relation in association scheme. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part IX, Tome 316 (2004), pp. 55-62. http://geodesic.mathdoc.fr/item/ZNSL_2004_316_a3/

[1] S. Evdokimov, I. Ponomarenko, “Kharakterizatsiya tsiklotomicheskikh skhem i normalnye koltsa Shura nad tsiklicheskoi gruppoi”, Algebra i analiz, 14:2 (2002), 11–55 | MR | Zbl

[2] A. E. Brouwer, “Spectrum and Connectivity of Graphs”, SMC 50 jubilee (Amsterdam, 1996), CWI Quarterly, 9, 1996, 37–40 | MR | Zbl

[3] A. E. Brouwer, D. M. Mesner, “The connectivity of strongly regular graphs”, European J. Combinatorics, 6 (1985), 215–216 | MR | Zbl

[4] S. Evdokimov, M. Karpinski, I. Ponomarenko, “On a New High Dimensional Weisfeiler–Leman Algorithm”, Journal of Algebraic Combinatorics, 10 (1999), 29–45 | DOI | MR | Zbl

[5] S. Evdokimov, I. Ponomarenko, “Separability Number and Schurity Number of Coherent Configurations”, Electronic Journal of Combinatorics, 7 (2000), R31 | MR | Zbl

[6] S. Evdokimov, I. Ponomarenko, G. Tinhofer, “Forestal algebras and algebraic forests (on a new class of weakly compact graphs)”, Discrete Mathematics, 225 (2000), 149–172 | DOI | MR | Zbl

[7] M. Watkins, “Connectivity of transitive graphs”, J. Combin. Theory, 8 (1970), 23–29 | DOI | MR | Zbl