@article{ZNSL_2004_316_a0,
author = {A. Ayad},
title = {Complexity bound of absolute factoring of parametric polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--29},
year = {2004},
volume = {316},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_316_a0/}
}
A. Ayad. Complexity bound of absolute factoring of parametric polynomials. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part IX, Tome 316 (2004), pp. 5-29. http://geodesic.mathdoc.fr/item/ZNSL_2004_316_a0/
[1] A. V. Aho, J. E. H. Hopcroft, J. D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Publishing Company, Reading, Mass., Menlo Park, Cal., London, 1974 | Zbl
[2] E. R. Berlekamp, “Factoring polynomials over finite fields”, Bell Systems Tech. J., 46 (1967), 1853–1859 | MR | Zbl
[3] E. R. Berlekamp, “Factoring polynomials over large finite fields”, Math. Comp., 24 (1970), 713–735 | DOI | MR
[4] A. Chistov, D. Grigoriev, “Complexity of quantifier elimination in the theory of algebraically closed fields”, LNCS, 176 (1985), 17–31 | MR
[5] A. L. Chistov, “Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time”, J. Sov. Math., 34:4 (1986), 1838–1882 | DOI | Zbl
[6] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, New York, 1995 | MR | Zbl
[7] D. Grigoriev, “Factorization of polynomials over a finite field and the solution of systems of algebraic equations”, J. Sov. Math., 34:4 (1986), 1762–1803 | DOI
[8] D. Grigoriev, “Complexity of quantifier elimination in the theory of ordinary differential equations”, Lect. Notes Computer Science, 378, 1989, 11–25 | MR
[9] D. Coppersmith, S. Winograd, “Matrix multiplication via arithmetic progressions”, Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, 1987, 1–6 | MR
[10] J. von zur Gathen, J. Gerhard, Modern Computer algebra, Cambridge University Press, 1999 | MR
[11] J. von zur Gathen, E. Kaltofen, “Factorization of multivariate polynomials over finite fields”, Math. Comp., 45:171 (1985), 251–261 | DOI | MR | Zbl
[12] E. Kaltofen, On the complexity of factoring polynomials with integer coefficients, PhD Thesis, Rensselaer Polytechnic Instit., Troy, NY, December, 1982 | Zbl
[13] E. Kaltofen, “Factorization of polynomials”, Computer Algebra, Springer, Vienna, 1983, 95–113 | MR
[14] A. K. Lenstra, H. W. Lenstra (Jr), L. Lovasz, “Factoring polynomials with rational coefficients”, Math. Ann., 261:4 (1982), 515–534 | DOI | MR | Zbl
[15] M. Mignotte, D. Stefanescu, Polynomials. An Algorithmic Approach, Springer, 1999 | MR | Zbl
[16] M. Mignotte, Mathématiques pour le calcul formel, Presses Univ. de France, Paris, 1989 | MR | Zbl
[17] D. R. Musser, “Multivariate polynomial factorization”, J. ACM, 22:2 (1975), 291–308 | DOI | MR | Zbl
[18] D. R. Musser, Algorithms for polynomial factorization, PhD Thesis and TR 134, Univ. Wisconsin, 1971
[19] J-F. Ragot, Sur la factorisation absolue des polynômes, Thèse à l'université de Limoges, Decembre, 1997
[20] H. Zassenhaus, “On Hensel factorization”, J. Number Theory, 1 (1969), 291–311 | DOI | MR | Zbl