Towards the Tauberian theorem of Keldysh
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 63-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

New versions of the Tauberian theorem of Keldysh are proved. We give examples to show the sharpness of the conditions of these theorems. Among auxiliary results, new cases of inversion of the de l'Hospital rule are obtained.
@article{ZNSL_2004_315_a4,
     author = {A. F. Grishin and I. V. Poedintseva},
     title = {Towards the {Tauberian} theorem of {Keldysh}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--89},
     year = {2004},
     volume = {315},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a4/}
}
TY  - JOUR
AU  - A. F. Grishin
AU  - I. V. Poedintseva
TI  - Towards the Tauberian theorem of Keldysh
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 63
EP  - 89
VL  - 315
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a4/
LA  - ru
ID  - ZNSL_2004_315_a4
ER  - 
%0 Journal Article
%A A. F. Grishin
%A I. V. Poedintseva
%T Towards the Tauberian theorem of Keldysh
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 63-89
%V 315
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a4/
%G ru
%F ZNSL_2004_315_a4
A. F. Grishin; I. V. Poedintseva. Towards the Tauberian theorem of Keldysh. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 63-89. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a4/

[1] M. V. Keldysh, “Ob odnoi tauberovoi teoreme”, Trudy MIAN SSSR, 38, 1951, 77–86 | Zbl

[2] M. V. Keldysh, Izbrannye trudy. Matematika, Nauka, M., 1985 | MR

[3] B. I. Korenblyum, “Obschaya tauberova teorema dlya otnosheniya funktsii”, DAN SSSR, 88:5 (1953), 745–748 | MR

[4] B. I. Korenblyum, “Obobschenie tauberovoi teoremy Vinera i garmonicheskii analiz bystro rastuschikh funktsii”, Trudy MMO, 7, 1958, 121–148

[5] V. I. Matsaev, Yu. A. Palant, “O raspredelenii spektra polinomialnogo operatornogo puchka”, DAN Arm. SSR, 42:5 (1966), 836–845

[6] N. H. Bingham, C. H. Goldie, J. L. Teugels, Regular variation, Cambrige University Press, Cambrige, London, New York, New Roshelle, Melburn, Sydney, 1987 | MR | Zbl

[7] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[8] U. Stadtmüller, R. Trauntner, “Tauberian theorems for Laplas transforms”, J. für die Reine und Angewandte Mathematik, 310 (1979), 283–290 | MR

[9] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavyalov, Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[10] M. V. Keldysh, “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh operatorov”, DAN SSSR, 77:1 (1951), 11–14 | Zbl

[11] A. G. Kostyuchenko, I. S. Sargsyan, Raspredelenie sobstvennykh znachenii, Nauka, M., 1985 | MR

[12] D. Drasin, D. F. Shea, “Polya peaks and the oscillation of positive functions”, Proceedings of AMS, 34 (1972), 403–411 | DOI | MR | Zbl

[13] A. F. Grishin, “Prosteishaya tauberova teorema”, Matem. zametki, 74:2 (2003), 221–229 | MR | Zbl

[14] N. Danford, Dzh. Shvarts, Lineinye operatory, IL, M., 1962