On a class of $C_{\cdot0}$-contractions: hyperinvariant subspaces and intertwining operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 48-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A class of $C_{\cdot0}$-contractions that is a generalization of the class of $C_{\cdot0}$-contractions with finite defect indices is considered. The results of [2,3] for $C_{\cdot0}$-contractions with finite defect indices are generalized: the lattices of hyperinvariant subspaces of such contraction $T$ is isomorphic to that of its Jordan model and is generated by subspaces of the form $\operatorname{Ker}\varphi(T)$ and $\operatorname{Ran}\varphi(T)$, where $\varphi\in H^\infty$. The form of the inverse to an isomorphism of the invariant subspace lattices given by an intertwining quasiaffinity is also studied. Next, for $C_{\cdot0}$-contractions in question, the quantity disc related to the lattice of invariant subspaces is computed.
@article{ZNSL_2004_315_a3,
     author = {M. F. Gamal'},
     title = {On a~class of $C_{\cdot0}$-contractions: hyperinvariant subspaces and intertwining operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--62},
     year = {2004},
     volume = {315},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a3/}
}
TY  - JOUR
AU  - M. F. Gamal'
TI  - On a class of $C_{\cdot0}$-contractions: hyperinvariant subspaces and intertwining operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 48
EP  - 62
VL  - 315
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a3/
LA  - ru
ID  - ZNSL_2004_315_a3
ER  - 
%0 Journal Article
%A M. F. Gamal'
%T On a class of $C_{\cdot0}$-contractions: hyperinvariant subspaces and intertwining operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 48-62
%V 315
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a3/
%G ru
%F ZNSL_2004_315_a3
M. F. Gamal'. On a class of $C_{\cdot0}$-contractions: hyperinvariant subspaces and intertwining operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 48-62. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a3/

[1] B. Sz.-Nagy, “Diagonalization of matrices over $H^\infty$”, Acta Sci. Math., 38 (1976), 223–238 | MR

[2] M. Uchiyama, “Hyperinvariant subspaces for contractions of class $C_{\cdot0}$”, Hokkaido Math. J., 6 (1977), 260–272 | MR | Zbl

[3] P. Y. Wu, “The hyperinvariant subspace lattice of a contraction of class $C_{\cdot 0}$”, Proc. Amer. Math. Soc., 72 (1978), 527–530 | DOI | MR | Zbl

[4] M. F. Gamal, “$C_{\cdot0}$-szhatiya: zhordanova model i reshetki invariantnykh podprostranstv”, Algebra i analiz, 15:5 (2003), 198–227 | MR | Zbl

[5] N. K. Nikolskii, V. I. Vasjunin, “Control subspaces of minimal dimensions, unitary and model operators”, J. Operator Theory, 10 (1983), 307–330 | MR

[6] B. Sekefalvi-Nad, Ch. Foyash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[7] H. Bercovici, Operator theory and arithmetic in $H^\infty$, Math. Surveys and Monographs, 26, AMS, Providence, RI, 1988 | MR | Zbl

[8] P. Y. Wu, “$C_{\cdot0}$-contractions: cyclic vectors, commutants and Jordan models”, J. Operator Theory, 5 (1981), 53–62 | MR | Zbl

[9] V. V. Kapustin, “Refleksivnost operatorov: obschie metody i kriterii dlya pochti izometricheskikh szhatii”, Algebra i analiz, 4:2 (1992), 141–160 | MR

[10] V. V. Kapustin, A. V. Lipin, “Operatornye algebry i reshetki invariantnykh podprostranstv, I, II”, Zapiski nauchn. semin. LOMI, 178, 1989, 23–56 ; 190, 1991, 110–147 | MR

[11] M. F. Gamal, “Reshetki invariantnykh podprostranstv kvaziaffinnykh preobrazovanii odnostoronnego sdviga konechnoi kratnosti”, Zap. nauchn. semin. POMI, 290, 2002, 27–32 | MR | Zbl

[12] D. A. Herrero, “Quasisimilarity does not preserve the hyperlattice”, Proc. Amer. Math. Soc., 65 (1977), 80–84 | DOI | MR | Zbl

[13] J. B. Conway, P. Y. Wu, “The splitting of $\mathfrak{A}(T_1\oplus T_2)$ and related questions”, Indiana Univ. Math. J., 26 (1977), 41–56 | DOI | MR