On a~class of $C_{\cdot0}$-contractions: hyperinvariant subspaces and intertwining operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 48-62
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of $C_{\cdot0}$-contractions that is a generalization of the class of $C_{\cdot0}$-contractions with finite defect indices is considered. The results of [2,3] for $C_{\cdot0}$-contractions with finite defect indices are generalized: the lattices of hyperinvariant subspaces of such contraction $T$ is isomorphic to that of its Jordan model and is generated by subspaces of the form $\operatorname{Ker}\varphi(T)$ and $\operatorname{Ran}\varphi(T)$, where $\varphi\in H^\infty$. The form of the inverse to an isomorphism of the invariant subspace lattices given by an intertwining quasiaffinity is also studied. Next, for $C_{\cdot0}$-contractions in question, the quantity disc related to the lattice of invariant subspaces is computed.
@article{ZNSL_2004_315_a3,
author = {M. F. Gamal'},
title = {On a~class of $C_{\cdot0}$-contractions: hyperinvariant subspaces and intertwining operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {48--62},
publisher = {mathdoc},
volume = {315},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a3/}
}
TY - JOUR
AU - M. F. Gamal'
TI - On a~class of $C_{\cdot0}$-contractions: hyperinvariant subspaces and intertwining operators
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2004
SP - 48
EP - 62
VL - 315
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a3/
LA - ru
ID - ZNSL_2004_315_a3
ER -
M. F. Gamal'. On a~class of $C_{\cdot0}$-contractions: hyperinvariant subspaces and intertwining operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 48-62. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a3/