A Tauberian theorem for orthogonal series of rational functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 43-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The so-called Takenaka–Malmquist system consist of a sequence of functions obtained from the sequence of rational fractions by applying the Gram–Schmidt orthogonalization procedure with respect to the Lesbegue measure on the unite circle. A Tauberian theorem for series with respect to the Takenaka–Malmquist system is proved.
@article{ZNSL_2004_315_a2,
     author = {I. V. Videnskii},
     title = {A~Tauberian theorem for orthogonal series of rational functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--47},
     year = {2004},
     volume = {315},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a2/}
}
TY  - JOUR
AU  - I. V. Videnskii
TI  - A Tauberian theorem for orthogonal series of rational functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 43
EP  - 47
VL  - 315
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a2/
LA  - ru
ID  - ZNSL_2004_315_a2
ER  - 
%0 Journal Article
%A I. V. Videnskii
%T A Tauberian theorem for orthogonal series of rational functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 43-47
%V 315
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a2/
%G ru
%F ZNSL_2004_315_a2
I. V. Videnskii. A Tauberian theorem for orthogonal series of rational functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 43-47. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a2/

[1] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR

[2] G. Ts. Tumarkin, “Razlozhenie analiticheskikh funktsii v ryad po ratsionalnym drobyam s zadannym mnozhestvom polyusov”, Izv. AN ArmSSR, ser. fiz.-matem., 14:1 (1961), 9–31 | MR | Zbl

[3] M. M. Dzhrbashyan, “Razlozhenie po sistemam ratsionalnykh funktsii s fiksirovannymi polyusami”, Izv. AN ArmSSR. Ser. matem., 2:1 (1965), 3–51

[4] M. M. Djrbashian, “A survey on the theory of orthogonal systems and some open problems”, Orthogonal Polynomials. Theory and Practice, ed. P. Nevai, Kluwer, 1990, 135–146 | MR

[5] A. Bultheel, P. Gonzalez–Vera, E. Hendriksen, O. Njastad, Orthogonal Rational Functions, Cambridge Monographs on Applied and Computational Math., 5, Cambridge Univ. Press, Cambridge, UK, 1999 | MR | Zbl

[6] A. Zigmund, Trigonometricheskie ryady, t. I, Mir, M., 1965 | MR

[7] Ya. L. Geronimus, Mnogochleny ortogonalnye na okruzhnosti i na otrezke, Fizmatgiz, M., 1958 | Zbl