Approximation by M.~Riesz's kernels in $L^p$ for $p1$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 5-38
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\alpha>0$. We consider the linear span ${\mathfrak X}_\alpha(\mathbb R^n)$ of scalar Riesz's kernels $\{\frac1{|x-a|^\alpha}\}_{a\in\mathbb R^n}$ and the linear span ${\mathfrak Y}_\alpha(\mathbb R^n)$ of vector Riesz's kernels $\{\frac1{|x-a|^{\alpha+1}}(x-a)\}_{a\in\mathbb R^n}$. We deal with the following questions.
1. When is the intersection ${\mathfrak X}_\alpha(\mathbb R^n)\cap
L^p(\mathbb R^n)$ dense in $L^p(\mathbb R^n)$?
2. When is the intersection ${\mathfrak Y}_\alpha(\mathbb R^n)\cap
L^p(\mathbb R^n,\mathbb R^n)$ dense in $L^p(\mathbb R^n,\mathbb R^n)$?
@article{ZNSL_2004_315_a0,
author = {A. B. Aleksandrov},
title = {Approximation by {M.~Riesz's} kernels in $L^p$ for $p<1$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--38},
publisher = {mathdoc},
volume = {315},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a0/}
}
A. B. Aleksandrov. Approximation by M.~Riesz's kernels in $L^p$ for $p<1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 5-38. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a0/