Approximation by M.~Riesz's kernels in $L^p$ for $p1$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 5-38

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\alpha>0$. We consider the linear span ${\mathfrak X}_\alpha(\mathbb R^n)$ of scalar Riesz's kernels $\{\frac1{|x-a|^\alpha}\}_{a\in\mathbb R^n}$ and the linear span ${\mathfrak Y}_\alpha(\mathbb R^n)$ of vector Riesz's kernels $\{\frac1{|x-a|^{\alpha+1}}(x-a)\}_{a\in\mathbb R^n}$. We deal with the following questions. 1. When is the intersection ${\mathfrak X}_\alpha(\mathbb R^n)\cap L^p(\mathbb R^n)$ dense in $L^p(\mathbb R^n)$? 2. When is the intersection ${\mathfrak Y}_\alpha(\mathbb R^n)\cap L^p(\mathbb R^n,\mathbb R^n)$ dense in $L^p(\mathbb R^n,\mathbb R^n)$?
@article{ZNSL_2004_315_a0,
     author = {A. B. Aleksandrov},
     title = {Approximation by {M.~Riesz's} kernels in $L^p$ for $p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--38},
     publisher = {mathdoc},
     volume = {315},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Approximation by M.~Riesz's kernels in $L^p$ for $p<1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 5
EP  - 38
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a0/
LA  - ru
ID  - ZNSL_2004_315_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Approximation by M.~Riesz's kernels in $L^p$ for $p<1$
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 5-38
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a0/
%G ru
%F ZNSL_2004_315_a0
A. B. Aleksandrov. Approximation by M.~Riesz's kernels in $L^p$ for $p<1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 5-38. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a0/