Approximation by M. Riesz's kernels in $L^p$ for $p1$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 5-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\alpha>0$. We consider the linear span ${\mathfrak X}_\alpha(\mathbb R^n)$ of scalar Riesz's kernels $\{\frac1{|x-a|^\alpha}\}_{a\in\mathbb R^n}$ and the linear span ${\mathfrak Y}_\alpha(\mathbb R^n)$ of vector Riesz's kernels $\{\frac1{|x-a|^{\alpha+1}}(x-a)\}_{a\in\mathbb R^n}$. We deal with the following questions. 1. When is the intersection ${\mathfrak X}_\alpha(\mathbb R^n)\cap L^p(\mathbb R^n)$ dense in $L^p(\mathbb R^n)$? 2. When is the intersection ${\mathfrak Y}_\alpha(\mathbb R^n)\cap L^p(\mathbb R^n,\mathbb R^n)$ dense in $L^p(\mathbb R^n,\mathbb R^n)$?
@article{ZNSL_2004_315_a0,
     author = {A. B. Aleksandrov},
     title = {Approximation by {M.~Riesz's} kernels in $L^p$ for $p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--38},
     year = {2004},
     volume = {315},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Approximation by M. Riesz's kernels in $L^p$ for $p<1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 5
EP  - 38
VL  - 315
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a0/
LA  - ru
ID  - ZNSL_2004_315_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Approximation by M. Riesz's kernels in $L^p$ for $p<1$
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 5-38
%V 315
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a0/
%G ru
%F ZNSL_2004_315_a0
A. B. Aleksandrov. Approximation by M. Riesz's kernels in $L^p$ for $p<1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 5-38. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a0/

[1] A. B. Aleksandrov, “Approksimatsiya ratsionalnymi funktsiyami i analog teoremy M. Rissa o sopryazhennykh funktsiyakh dlya prostranstva $L^{p}$ pri $p\in(0,1)$”, Mat. sb., 107(149):1 (1978), 3–19 | MR | Zbl

[2] A. B. Aleksandrov, P. P. Kargaev, “Klassy Khardi garmonicheskikh v poluprostranstve funktsii”, Algebra i analiz, 5:2 (1993), 1–73 | MR | Zbl

[3] A. P. Calderón, A. Zygmund, “On higher gradients of harmonic functions”, Studia Math., 24 (1964), 211–226 | MR | Zbl

[4] C. Fefferman, E. M. Stein, “$H^{p}$ spaces of several variables”, Acta Math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl

[5] J. García-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Publishing Co., Amsterdam, 1985 | MR | Zbl

[6] M. G. Goluzina, “Ob odnoi teoreme edinstvennosti”, Vestnik SPbGU Ser. 1, 1987, no. 1, 109–111 | MR | Zbl

[7] V. P. Khavin, “Printsip neopredelennosti dlya odnomernykh potentsialov M. Rissa”, DAN SSSR, 264:3 (1982), 559–563 | MR | Zbl

[8] V. P. Havin, B. Jöricke, The uncertainty principle in harmonic analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 28, Springer-Verlag, Berlin, 1994 | MR | Zbl

[9] P. P. Kargaev, “O polozhitelnykh resheniyakh uravneniya Darbu $\Delta u=(\alpha-1)y^{-1}\partial u/\partial y$, $\alpha>0$, v poluprostranstve $y>0$”, Algebra i analiz, 8:3 (1996), 125–150 | MR | Zbl

[10] E. M. Landis, Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, Moskva, 1971 | MR

[11] D. M. Oberlin, “Translation-invariant operators on $L^p(G)$, $0

1$, II”, Canad. J. Math., 29:3 (1977), 626–630 | DOI | MR | Zbl

[12] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[13] A. I. Sergeev, “Teoremy edinstvennosti i approksimatsiya dlya odnomernykh potentsialov M. Rissa”, Vestnik SPbGU, Ser. 1, 1994, no. 3, 45–53 | Zbl

[14] E. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, Moskva, 1973 | MR

[15] P. Turpin, L. Waelbroeck, “Intégration et fonctions holomorphes dans les espaces localement pseudo-convexes”, C. R. Acad. Sci. Paris Sér. A–B, 267 (1968), 160–162 | MR | Zbl