Inequalities for majorizing analytical functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 155-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For analytic functions satisfying Meyman's majorization conditions, with the use of classical properties of conformal mappings exact inequalities complementing and strengthening the results of Akhiezer and Meyman are derived. As a corollary, for the modulus of the derivative of a rationally-trigonometric function a Bernstein type bound, which implies the result by Borwein, Erdélyi, and Zhang, is obtained.
@article{ZNSL_2004_314_a9,
     author = {A. V. Olesov},
     title = {Inequalities for majorizing analytical functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--173},
     year = {2004},
     volume = {314},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a9/}
}
TY  - JOUR
AU  - A. V. Olesov
TI  - Inequalities for majorizing analytical functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 155
EP  - 173
VL  - 314
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a9/
LA  - ru
ID  - ZNSL_2004_314_a9
ER  - 
%0 Journal Article
%A A. V. Olesov
%T Inequalities for majorizing analytical functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 155-173
%V 314
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a9/
%G ru
%F ZNSL_2004_314_a9
A. V. Olesov. Inequalities for majorizing analytical functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 155-173. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a9/

[1] N. N. Meiman, “Differentsialnye neravenstva i nekotorye voprosy raspredeleniya nulei tselykh i odnoznachnykh analiticheskikh funktsii”, Uspekhi mat. nauk, 7:3 (1952), 3–62 | MR | Zbl

[2] N. I. Akhiezer, Lektsii po teorii approksimatsii, M., 1965

[3] V. N. Dubinin, “O primenenii konformnykh otobrazhenii v neravenstvakh dlya ratsionalnykh funktsii”, Izv. RAN, ser. mat., 66:2 (2002), 67–80 | MR | Zbl

[4] P. Borwein, T. Erdelyi, J. Zhang, “Chebyshev polynomials and Markov–Bernstein type inequalities for the rational spaces”, J. London Math. Soc., 50 (1994), 501–519 | MR | Zbl

[5] S. B. Stechkin, “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1511–1514 | Zbl

[6] V. N. Dubinin, “Teoremy iskazheniya dlya polinomov na okruzhnosti”, Mat. sb., 191:12 (2000), 51–60 | MR | Zbl

[7] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl

[8] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, M., 1980

[9] N. A. Lebedev, “Nekotorye otsenki dlya funktsii, regulyarnykh i odnolistnykh v kruge”, Vestn. LGU, ser. mat., fiz., khim., 11:4 (1955), 3–21 | Zbl

[10] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, M., 1975 | MR