Renormalization on the one-dimansion torus
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 142-154

Voir la notice de l'article provenant de la source Math-Net.Ru

Renormalization formulas connecting the points of the orbits $O^\pm_0$, i.e., the sequences generated by an irrational shift on the half-open interval $[0,1)$ or $(0,1]$, and the points of the orbits' derivatives $d^mO^\pm_0$, i.e., the sequences obtained by restricting $O^\pm_0$ to half-open intervals of smaller length, are obtained.
@article{ZNSL_2004_314_a8,
     author = {N. N. Manuylov},
     title = {Renormalization on the one-dimansion torus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {142--154},
     publisher = {mathdoc},
     volume = {314},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a8/}
}
TY  - JOUR
AU  - N. N. Manuylov
TI  - Renormalization on the one-dimansion torus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 142
EP  - 154
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a8/
LA  - ru
ID  - ZNSL_2004_314_a8
ER  - 
%0 Journal Article
%A N. N. Manuylov
%T Renormalization on the one-dimansion torus
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 142-154
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a8/
%G ru
%F ZNSL_2004_314_a8
N. N. Manuylov. Renormalization on the one-dimansion torus. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 142-154. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a8/