On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 41-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper studies the region of values of the system $\{f(z_1), f(z_2),\dots,f(z_n)\}$ in the class $T$ of functions $f(z)=z+a_2z^2+\dots$ regular in the unit disk and satisfying the condition $\operatorname{Im}f(z)\cdot\operatorname{Im}z>0$ for $\operatorname{Im}z\ne0$.
@article{ZNSL_2004_314_a3,
     author = {E. G. Goluzina},
     title = {On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {41--51},
     year = {2004},
     volume = {314},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 41
EP  - 51
VL  - 314
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/
LA  - ru
ID  - ZNSL_2004_314_a3
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 41-51
%V 314
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/
%G ru
%F ZNSL_2004_314_a3
E. G. Goluzina. On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 41-51. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/

[1] W. Rogosinski, “Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen”, Math. Z., 35:1 (1932), 93–121 | DOI | MR

[2] E. G. Goluzina, “O mnozhestve znachenii odnoi sistemy funktsionalov v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 226, 1996, 69–79

[3] E. G. Goluzina, “O mnozhestve znachenii sistem $\{f(z_1),f'(z_1)\}$ i $\{f(z_1)$, $f(z_2)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 254, 1998, 65–75 | MR

[4] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{f(z_1),f(z_2),f(z_3)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 302, 2003, 5–17 | MR

[5] E. G. Goluzina, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v klasse tipichno veschestvennykh funktsii”, Vestn. LGU, ser. mat., mekh., i astr., 7:2 (1965), 45–63 | MR

[6] V. A. Adreeva, N. A. Lebedev, A. V. Stovbun, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v nekotorykh klassakh regulyarnykh funktsii”, Vestn. LGU, ser. mat., mekh., i astr., 7:2 (1961), 8–22

[7] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, M., 1973

[8] F. R. Gantmakher, Teoriya matrits, 3-e izd., M., 1967