On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 41-51

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the region of values of the system $\{f(z_1), f(z_2),\dots,f(z_n)\}$ in the class $T$ of functions $f(z)=z+a_2z^2+\dots$ regular in the unit disk and satisfying the condition $\operatorname{Im}f(z)\cdot\operatorname{Im}z>0$ for $\operatorname{Im}z\ne0$.
@article{ZNSL_2004_314_a3,
     author = {E. G. Goluzina},
     title = {On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {41--51},
     publisher = {mathdoc},
     volume = {314},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 41
EP  - 51
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/
LA  - ru
ID  - ZNSL_2004_314_a3
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 41-51
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/
%G ru
%F ZNSL_2004_314_a3
E. G. Goluzina. On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 41-51. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/