On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 41-51
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper studies the region of values of the system $\{f(z_1), f(z_2),\dots,f(z_n)\}$ in the class $T$ of functions $f(z)=z+a_2z^2+\dots$ regular in the unit disk and satisfying the condition $\operatorname{Im}f(z)\cdot\operatorname{Im}z>0$ for $\operatorname{Im}z\ne0$.
@article{ZNSL_2004_314_a3,
author = {E. G. Goluzina},
title = {On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {41--51},
publisher = {mathdoc},
volume = {314},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/}
}
TY - JOUR
AU - E. G. Goluzina
TI - On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2004
SP - 41
EP - 51
VL - 314
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/
LA - ru
ID - ZNSL_2004_314_a3
ER -
E. G. Goluzina. On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 41-51. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a3/