@article{ZNSL_2004_314_a2,
author = {E. P. Golubeva},
title = {The distribution of the eigenvalues of {Hecke} operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {33--40},
year = {2004},
volume = {314},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a2/}
}
E. P. Golubeva. The distribution of the eigenvalues of Hecke operators. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 33-40. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a2/
[1] J.-P. Serre, “Répartition asymptotique des valeurs propres de l'opérateur de Hecke $T_p$”, J. Amer. Math. Soc., 10:1 (1997), 75–101 | DOI | MR
[2] J. B. Conrey, W. Duke, D. W. Farmer, “The distribution of the eigenvalues of Hecke operators”, Acta Arithm., 78:4 (1997), 405–409 | MR | Zbl
[3] P. Sarnak, “Statistical properties of eigenvalues of the Hecke operators”, Analytic Number Theory and Diophantine Problems (Stillwater, OK, 1984), Progr. Math., 70, Birkhäuser, Boston, 1987, 321–331 | MR
[4] P. Michel, “Autour de la conjecture de Sato–Tate pour les sommes de Kloosterman, I”, Invent. Math., 121 (1995), 61–78 | DOI | MR | Zbl
[5] R. Livné, “The average distribution of cubic exponential sums”, J. Reine Angew. Math., 375–376 (1987), 362–379 | DOI | MR | Zbl
[6] E. P. Golubeva, “Raspredelenie znachenii $L$-funktsii Gekke v tochke 1”, Zap. nauchn. semin. POMI, 314, 2004, 33–40 | Zbl
[7] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, M., 1980 | MR