Derivatives of circle rotations and similarity of orbits
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 272-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that the derivative of a circle rotation on an arbitrary interval is either a circle rotation or a noncyclic exchange of three intervals. In the former case, all possible values of the new angle of rotation are computed. It is shown that the restriction of the orbit of a circle rotation to an eigeninterval of differentiation is similar to the orbit of another circle rotation.
@article{ZNSL_2004_314_a16,
     author = {A. V. Shutov},
     title = {Derivatives of circle rotations and similarity of orbits},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {272--284},
     year = {2004},
     volume = {314},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a16/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - Derivatives of circle rotations and similarity of orbits
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 272
EP  - 284
VL  - 314
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a16/
LA  - ru
ID  - ZNSL_2004_314_a16
ER  - 
%0 Journal Article
%A A. V. Shutov
%T Derivatives of circle rotations and similarity of orbits
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 272-284
%V 314
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a16/
%G ru
%F ZNSL_2004_314_a16
A. V. Shutov. Derivatives of circle rotations and similarity of orbits. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 272-284. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a16/

[1] G. Rauzy, Ensembles à restes bornés, Sémin. théor. nombers de Bordeaux (Talence, 1983–1984), Univ. Bordeaux I, Talence, 1984, exposé 24 | MR

[2] S. Ferenczi, “Bounded remainder sets”, Acta Arithm., 61:4 (1992), 319–326 | MR | Zbl

[3] S. Ferenczi, Ch. Holton, L. Zamboni, Structure of 3-interval exchange. I: An arithmetic study, Preprints of Marcelle University, No 24, 2001

[4] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 2004 (to appear)

[5] N. N. Manuilov, “Samopodobie nekotorykh posledovatelnostei”, Zap. nauchn. semin. POMI, 302, 2003, 81–95 | MR

[6] N. N. Manuilov, “Rekurrentnye samopodobnye razbieniya”, Chebyshevskii sbornik, 4:2 (2003), 87–90 | MR | Zbl

[7] A. V. Shutov, N. N. Manuilov, “Globalnyi poryadok razbieniya okruzhnosti”, Molodezh. Obrazovanie. Ekonomika, Sbornik nauchnykh statei uchastnikov 5-oi Vserossiiskoi nauchno-prakticheskoi konferentsii molodykh uchenykh, aspirantov i studentov (4 maya 2004 g., Yaroslavl), 2004, 101–103

[8] A. Ya. Khinchin, Tsepnye drobi, M., 1969 | Zbl

[9] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika, M., 1998