A~converse approximation theorem on subsets of elliptic curves
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 257-271

Voir la notice de l'article provenant de la source Math-Net.Ru

Functions defined on closed subsets of elliptic curves $G\subset E=\{(\zeta,w)\in\mathbb C^2:w^2=4\zeta^3-g_2\zeta-g_3\}$ are considered. The following converse theorem of approximation is established. Consider a function $f\colon G\to\mathbb C$. Assume that there is a sequence of polynomials $P_n(\zeta, w)$, in two variables, $\deg{P_n}\leqslant n$, such that the following inequalities are valid: $$ |f(\zeta,w)-P_n(\zeta,w)|\leqslant c(f,G)\delta^\alpha_{1/n}(\zeta,w)\quad\text{при}\quad(\zeta,w)\in\partial G, $$ where $0\alpha1$. Then the function $f$ necessarily belongs to the class $H^\alpha(G)$. The direct approximation theorem was proved in the previous paper by the authors. Thus, a constructive description of the class $H^\alpha(G)$ is obtained.
@article{ZNSL_2004_314_a15,
     author = {A. V. Khaustov and N. A. Shirokov},
     title = {A~converse approximation theorem on subsets of elliptic curves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {257--271},
     publisher = {mathdoc},
     volume = {314},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a15/}
}
TY  - JOUR
AU  - A. V. Khaustov
AU  - N. A. Shirokov
TI  - A~converse approximation theorem on subsets of elliptic curves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 257
EP  - 271
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a15/
LA  - ru
ID  - ZNSL_2004_314_a15
ER  - 
%0 Journal Article
%A A. V. Khaustov
%A N. A. Shirokov
%T A~converse approximation theorem on subsets of elliptic curves
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 257-271
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a15/
%G ru
%F ZNSL_2004_314_a15
A. V. Khaustov; N. A. Shirokov. A~converse approximation theorem on subsets of elliptic curves. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 257-271. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a15/