Identities involving the coefficients of automorphic $L$-functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 247-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $f(z)$ be a holomorphic Hecke eigenform of weight $k$ with respect to $SL(2,\mathbb Z)$ and let $$ L(s,\operatorname{sym}^2f)=\sum\limits^{\infty}_{n=1}c_n n^{-s},\quad \operatorname{Re}s>1, $$ denote the symmetric square $L$-function of $f$. A Voronoi type formula for $$ C(x)=\sum\limits_{n\leqslant x}c_n. $$ and the relation $$ C(x)=\Omega_{\pm}(x^{1/3}). $$ are proved. Heuristic approaches to estimation of exponential sums arising in this connection are considered.
@article{ZNSL_2004_314_a14,
     author = {O. M. Fomenko},
     title = {Identities involving the coefficients of automorphic $L$-functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {247--256},
     year = {2004},
     volume = {314},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a14/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Identities involving the coefficients of automorphic $L$-functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 247
EP  - 256
VL  - 314
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a14/
LA  - ru
ID  - ZNSL_2004_314_a14
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Identities involving the coefficients of automorphic $L$-functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 247-256
%V 314
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a14/
%G ru
%F ZNSL_2004_314_a14
O. M. Fomenko. Identities involving the coefficients of automorphic $L$-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 247-256. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a14/

[1] O. M. Fomenko, “Avtomorfnye $L$-funktsii v aspekte po vesu”, Zap. nauchn. semin. POMI, 314, 2004, 221–246 | Zbl

[2] H. Iwaniec, W. Luo, P. Sarnak, “Low lying zeros of families of $L$-functions”, Publ. IHES, 91 (2000), 55–131 | MR | Zbl

[3] A. Ivić, K. Matsumoto, Y. Tanigawa, “On Riesz means of the coefficients of the Rankin–Selberg series”, Math. Proc. Camb. Phil. Soc., 127 (1999), 117–131 | DOI | MR | Zbl

[4] J. L. Hafner, “On the representation of the summatory functions of a class of arithmetical functions”, Lect. Notes Math., 899, 1981, 148–165 | MR | Zbl

[5] E. Titchmarsh, The theory of the Riemann zeta function, Second edition, Oxford, 1986 | MR | Zbl

[6] J. L. Hafner, “On the average order of a class of arithmetical functions”, J. Number Theory, 15:1 (1982), 36–76 | DOI | MR | Zbl

[7] A. Ivić, “Large values of certain number-theoretic error terms”, Acta Arithm., 56:2 (1990), 135–159 | MR | Zbl

[8] C. J. Moreno, F. Shahidi, “The fourth moment of Ramanujan $\tau$-function”, Math. Ann., 266:2 (1983), 233–239 | DOI | MR | Zbl

[9] A. B. Voronetskii, “Analog teoremy Khardi dlya koeffitsientov Fure parabolicheskikh form”, Avtomorfnye funktsii i teoriya chisel, Izhevsk, 1987, 56–64 | MR