Identities involving the coefficients of automorphic $L$-functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 247-256
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(z)$ be a holomorphic Hecke eigenform of weight $k$ with respect to $SL(2,\mathbb Z)$ and let
$$
L(s,\operatorname{sym}^2f)=\sum\limits^{\infty}_{n=1}c_n n^{-s},\quad
\operatorname{Re}s>1,
$$
denote the symmetric square $L$-function of $f$. A Voronoi type formula for
$$
C(x)=\sum\limits_{n\leqslant x}c_n.
$$
and the relation
$$
C(x)=\Omega_{\pm}(x^{1/3}).
$$
are proved. Heuristic approaches to estimation of exponential sums arising in this connection are considered.
@article{ZNSL_2004_314_a14,
author = {O. M. Fomenko},
title = {Identities involving the coefficients of automorphic $L$-functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {247--256},
publisher = {mathdoc},
volume = {314},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a14/}
}
O. M. Fomenko. Identities involving the coefficients of automorphic $L$-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 247-256. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a14/