Automorphic $L$-functions in the weight aspect
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 221-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $S_k(\Gamma)$ be the space of holomorphic $\Gamma$-cusp forms $f(z)$ of even weight $k\geqslant12$ for $\Gamma=SL(2,\mathbb Z)$, and let $S_k(\Gamma)^+$ be the set of all Hecke eigenforms from this space with the first Fourier coefficient $a_f(1)=1$. For $f\in S_k(\Gamma)+$, consider the Hecke $L$-function $L(s,f)$. Let $$ S(k\leqslant K)=\bigcup_{\substack{12\leqslant k\leqslant K\\k\text{ even}}}S_k(\Gamma)^+. $$ It is proved that for large $K$, $$ \sum_{f\in S(k\leqslant K)}L\Bigl(\frac12,f\Bigr)^4\ll K^{2+\varepsilon}, $$ where $\varepsilon>0$ is arbitrary. For $f\in S_k(\Gamma)^+$ let $L(s,\operatorname{sym}^2f)$ denote the symmetric square $L$-function. It is proved that as $k\to\infty$ the frequence $$ \frac{\#\{f\mid f\in S_k(\Gamma)^+,L(1,\operatorname{sym}^2f)\leqslant x\}}{\#\{f\mid f\in S_k(\Gamma)^+\}} $$ converges to a distribution function $G(x)$ at every point of continuity of the latter, and for the corresponding characteristic function an explicit expression is obtained.
@article{ZNSL_2004_314_a13,
     author = {O. M. Fomenko},
     title = {Automorphic $L$-functions in the weight aspect},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {221--246},
     year = {2004},
     volume = {314},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a13/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Automorphic $L$-functions in the weight aspect
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 221
EP  - 246
VL  - 314
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a13/
LA  - ru
ID  - ZNSL_2004_314_a13
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Automorphic $L$-functions in the weight aspect
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 221-246
%V 314
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a13/
%G ru
%F ZNSL_2004_314_a13
O. M. Fomenko. Automorphic $L$-functions in the weight aspect. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 221-246. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a13/

[1] P. Sarnak, “Estimates for Rankin–Selberg $L$-functions and quantum unique ergodicity”, J. Funct. Analysis, 184 (2001), 419–453 | DOI | MR | Zbl

[2] N. V. Kuznetsov, “Svertka koeffitsientov Fure ryadov Eizenshteina–Maasa”, Zap. nauchn. semin. LOMI, 129, 1983, 43–84 | MR | Zbl

[3] R. F. Faiziev, “Otsenka v srednem v additivnoi probleme delitelei”, Tezisy dokladov Vsesoyuznoi konferentsii “Teoriya chisel i ee prilozheniya” (17–19 sentyabrya 1985 g., Tbilisi), Tbilisi, 1985, 273–276

[4] M. B. Barban, “Metod “bolshogo resheta” i ego primeneniya v teorii chisel”, Uspekhi mat. nauk, 21:1 (1966), 51–102 | MR | Zbl

[5] M. B. Barban, ““Bolshoe resheto” Yu. V. Linnika i predelnaya teorema dlya chisla klassov idealov mnimogo kvadratichnogo polya”, Izv. AN SSSR. Ser. mat., 26:4 (1962), 573–580 | MR | Zbl

[6] W. Luo, “Values of symmetric square $L$-functions at 1”, J. Reine Angew. Math., 506 (1999), 215–235 | MR | Zbl

[7] O. M. Fomenko, “Povedenie avtomorfnykh $L$-funktsii v tochkakh $s=1$ i $s=\frac{1}{2}$”, Zap. nauchn. semin. POMI, 302, 2003, 149–167

[8] J. Hoffstein, P. Lockhart, “Coefficients of Maass forms and the Siegel zero. Appendix by D. Goldfeld, J. Hoffstein, D. Lieman. An effective zero free region”, Ann. of Math., 140 (1994), 161–181 | DOI | MR | Zbl

[9] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, 17, Providence, RI, 1997 | MR

[10] M. Jutila, A method in the theory of exponential sums, Bombay, 1987

[11] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, T. 2, M., 1974

[12] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, M., 1979

[13] G. Montgomern, Multiplikativnaya teoriya chisel, M., 1974

[14] S. Gelbart, H. Jacquet, “A relation between automorphic representations of $GL(2)$ and $SL(3)$”, Ann. Sci. Ec. Norm. Sup., 4:11 (1978), 471–552 | MR

[15] O. M. Fomenko, “Koeffitsienty Fure parabolicheskikh form i avtomorfnye $L$-funktsii”, Zap. nauchn. semin. POMI, 237, 1997, 194–226 | MR | Zbl

[16] N. Kurokawa, “On the meromorphy of Euler products”, Proc. Japan Acad. A, 54:6 (1978), 163–166 | DOI | MR | Zbl

[17] W. Duke, E. Kowalski, “A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations”, Invent. Math., 139 (2000), 1–39 | DOI | MR | Zbl