Automorphic $L$-functions in the weight aspect
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 221-246
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $S_k(\Gamma)$ be the space of holomorphic $\Gamma$-cusp forms $f(z)$ of even weight $k\geqslant12$ for $\Gamma=SL(2,\mathbb Z)$, and let $S_k(\Gamma)^+$ be the set of all Hecke eigenforms from this space with the first Fourier coefficient $a_f(1)=1$. For $f\in S_k(\Gamma)+$, consider the Hecke $L$-function $L(s,f)$. Let
$$
S(k\leqslant K)=\bigcup_{\substack{12\leqslant k\leqslant K\\k\text{ even}}}S_k(\Gamma)^+.
$$
It is proved that for large $K$,
$$
\sum_{f\in S(k\leqslant K)}L\Bigl(\frac12,f\Bigr)^4\ll K^{2+\varepsilon},
$$
where $\varepsilon>0$ is arbitrary. For $f\in S_k(\Gamma)^+$ let $L(s,\operatorname{sym}^2f)$ denote the symmetric square $L$-function. It is proved
that as $k\to\infty$ the frequence
$$
\frac{\#\{f\mid f\in S_k(\Gamma)^+,L(1,\operatorname{sym}^2f)\leqslant x\}}{\#\{f\mid f\in S_k(\Gamma)^+\}}
$$
converges to a distribution function $G(x)$ at every point of continuity of the latter, and for the corresponding characteristic function an explicit expression is obtained.
@article{ZNSL_2004_314_a13,
author = {O. M. Fomenko},
title = {Automorphic $L$-functions in the weight aspect},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {221--246},
publisher = {mathdoc},
volume = {314},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a13/}
}
O. M. Fomenko. Automorphic $L$-functions in the weight aspect. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 221-246. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a13/