The continuously removable sets for quasiconformal mappings
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 213-220

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a domain in the $n$-dimensional Euclidean space $R^n$, $n\geqslant 2$, and let $E$ be a compact in $D$. The paper presents conditions on the compact $E$ under which any homeomorphic mapping $f\colon D\setminus E\rightarrow R^n$ can be extended to a continuous mapping $f\colon D\rightarrow\bar{R}^n=R^n\cup\{\infty\}$. These conditions define the class of NCS-compacts, which, for $n=2$, coincides with the class of topologically removable compacts for conformal and quasiconformal mappings.
@article{ZNSL_2004_314_a12,
     author = {A. V. Tyutyuev and V. A. Shlyk},
     title = {The continuously removable sets for quasiconformal mappings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {213--220},
     publisher = {mathdoc},
     volume = {314},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/}
}
TY  - JOUR
AU  - A. V. Tyutyuev
AU  - V. A. Shlyk
TI  - The continuously removable sets for quasiconformal mappings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 213
EP  - 220
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/
LA  - ru
ID  - ZNSL_2004_314_a12
ER  - 
%0 Journal Article
%A A. V. Tyutyuev
%A V. A. Shlyk
%T The continuously removable sets for quasiconformal mappings
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 213-220
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/
%G ru
%F ZNSL_2004_314_a12
A. V. Tyutyuev; V. A. Shlyk. The continuously removable sets for quasiconformal mappings. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 213-220. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/