The continuously removable sets for quasiconformal mappings
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 213-220
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $D$ be a domain in the $n$-dimensional Euclidean space $R^n$, $n\geqslant 2$, and let $E$ be a compact in $D$. The paper presents conditions on the compact $E$ under which any homeomorphic mapping $f\colon D\setminus E\rightarrow R^n$ can be extended to a continuous mapping $f\colon D\rightarrow\bar{R}^n=R^n\cup\{\infty\}$. These conditions define the class of NCS-compacts, which, for $n=2$, coincides with the class of topologically removable compacts for conformal and quasiconformal mappings.
@article{ZNSL_2004_314_a12,
author = {A. V. Tyutyuev and V. A. Shlyk},
title = {The continuously removable sets for quasiconformal mappings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {213--220},
publisher = {mathdoc},
volume = {314},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/}
}
A. V. Tyutyuev; V. A. Shlyk. The continuously removable sets for quasiconformal mappings. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 213-220. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/