The continuously removable sets for quasiconformal mappings
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 213-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $D$ be a domain in the $n$-dimensional Euclidean space $R^n$, $n\geqslant 2$, and let $E$ be a compact in $D$. The paper presents conditions on the compact $E$ under which any homeomorphic mapping $f\colon D\setminus E\rightarrow R^n$ can be extended to a continuous mapping $f\colon D\rightarrow\bar{R}^n=R^n\cup\{\infty\}$. These conditions define the class of NCS-compacts, which, for $n=2$, coincides with the class of topologically removable compacts for conformal and quasiconformal mappings.
@article{ZNSL_2004_314_a12,
     author = {A. V. Tyutyuev and V. A. Shlyk},
     title = {The continuously removable sets for quasiconformal mappings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {213--220},
     year = {2004},
     volume = {314},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/}
}
TY  - JOUR
AU  - A. V. Tyutyuev
AU  - V. A. Shlyk
TI  - The continuously removable sets for quasiconformal mappings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 213
EP  - 220
VL  - 314
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/
LA  - ru
ID  - ZNSL_2004_314_a12
ER  - 
%0 Journal Article
%A A. V. Tyutyuev
%A V. A. Shlyk
%T The continuously removable sets for quasiconformal mappings
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 213-220
%V 314
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/
%G ru
%F ZNSL_2004_314_a12
A. V. Tyutyuev; V. A. Shlyk. The continuously removable sets for quasiconformal mappings. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 213-220. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/

[1] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, M., 1983 | MR

[2] H. Renggli, “Quasiconformal mappings and extremal lengths”, Amer. J. Math., 86 (1964), 63–69 | DOI | MR | Zbl

[3] I. N. Pesin, “Metricheskie svoistva kvazikonformnykh otobrazhenii”, Mat. sb., 40:3 (1956), 281–294 | MR | Zbl

[4] L. Ahlfors, A. Beurling, “Conformal invariants and function theoretic null sets”, Acta Math., 83:1–2 (1950), 101–129 | MR | Zbl

[5] O. Martio, R. Nyakki, “Prodolzhenie kvazikonformnykh otobrazhenii”, Sib. mat. zh., 28:4 (1987), 162–170 | MR | Zbl

[6] V. A. Shlyk, “Topologicheski ustranimye kompakty dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Dalnevost. mat. zh., 1995, no. 1, 80–84

[7] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Novosibirsk, 1983

[8] B. Fuglede, “Extremal length and functional completion”, Acta Math., 90 (1957), 171–219 | DOI | MR

[9] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-oe izd., M., 1966 | MR

[10] I. N. Demshin, Yu. V. Dymchenko, V. A. Shlyk, “Kriterii nul-mnozhestv dlya vesovykh sobolevskikh prostranstv”, Zap. nauch. semin. POMI, 276, 2001, 52–82 | MR | Zbl

[11] K. Strebel, “On the maximal dilation of quasiconformal mappings”, Proc. Amer. Math. Soc., 6 (1955), 903–909 | DOI | MR | Zbl