@article{ZNSL_2004_314_a12,
author = {A. V. Tyutyuev and V. A. Shlyk},
title = {The continuously removable sets for quasiconformal mappings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {213--220},
year = {2004},
volume = {314},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/}
}
A. V. Tyutyuev; V. A. Shlyk. The continuously removable sets for quasiconformal mappings. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 213-220. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a12/
[1] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, M., 1983 | MR
[2] H. Renggli, “Quasiconformal mappings and extremal lengths”, Amer. J. Math., 86 (1964), 63–69 | DOI | MR | Zbl
[3] I. N. Pesin, “Metricheskie svoistva kvazikonformnykh otobrazhenii”, Mat. sb., 40:3 (1956), 281–294 | MR | Zbl
[4] L. Ahlfors, A. Beurling, “Conformal invariants and function theoretic null sets”, Acta Math., 83:1–2 (1950), 101–129 | MR | Zbl
[5] O. Martio, R. Nyakki, “Prodolzhenie kvazikonformnykh otobrazhenii”, Sib. mat. zh., 28:4 (1987), 162–170 | MR | Zbl
[6] V. A. Shlyk, “Topologicheski ustranimye kompakty dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Dalnevost. mat. zh., 1995, no. 1, 80–84
[7] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Novosibirsk, 1983
[8] B. Fuglede, “Extremal length and functional completion”, Acta Math., 90 (1957), 171–219 | DOI | MR
[9] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-oe izd., M., 1966 | MR
[10] I. N. Demshin, Yu. V. Dymchenko, V. A. Shlyk, “Kriterii nul-mnozhestv dlya vesovykh sobolevskikh prostranstv”, Zap. nauch. semin. POMI, 276, 2001, 52–82 | MR | Zbl
[11] K. Strebel, “On the maximal dilation of quasiconformal mappings”, Proc. Amer. Math. Soc., 6 (1955), 903–909 | DOI | MR | Zbl