On certain finite group related to cubic theta polynomials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 196-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

With the Kubota–Patterson cubic theta function 27 shifted theta functions are associated. Then a certain group of permutations of the shifted theta functions is defined in a natural way, which proves to be isometric to a subgroup of the known group of permutations of 27 lines on a cubic surface.
@article{ZNSL_2004_314_a11,
     author = {N. V. Proskurin},
     title = {On certain finite group related to cubic theta polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--212},
     year = {2004},
     volume = {314},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a11/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - On certain finite group related to cubic theta polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 196
EP  - 212
VL  - 314
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a11/
LA  - ru
ID  - ZNSL_2004_314_a11
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T On certain finite group related to cubic theta polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 196-212
%V 314
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a11/
%G ru
%F ZNSL_2004_314_a11
N. V. Proskurin. On certain finite group related to cubic theta polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 196-212. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a11/

[1] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ ($n\ge3$) and $\mathrm{Sp}_{2n}$ ($n\ge2$)”, Inst. des Hautes Études Scient., Publ. Math., 22 (1964), 5–60 | DOI | MR | Zbl

[2] N. Bourbaki, Groupes et algebres de Lie, Paris

[3] H. S. M. Coxeter, Regular complex polytopes, Second edition, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[4] L. E. Dickson, Linear groups, ed. B. G. Teubner, Leipzig, 1901

[5] J. Dieudonné, On the automorphisms of the classical groups, Memoirs Amer. Math. Soc., 2, 1951 | MR

[6] J. Dieudonné, La géométrie des groupes classiques, Ergebn. Math. und ihrer Grenzgeb., 5, Springer-Verlag, 1955 | MR | Zbl

[7] J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space, Springer-Verlag, 1998 | MR

[8] R. Hartshorne, Algebraic geometry, Springer-Verlag, 1977 | MR | Zbl

[9] A. Henderson, The twenty-seven lines upon the cubic surface, Cambridge Univ. Press, Cambridge, 1911 | Zbl

[10] L. K. Hua, “On the automorphisms of the symplectic group over any field”, Ann. of Math., 49 (1948), 739–759 | DOI | MR | Zbl

[11] C. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villars, Paris, 1870 | Zbl

[12] T. Kubota, “Ein arithmetischer Satz über eine Matrizengruppe”, J. Reine und Angew. Math., 222 (1965), 55–57 | MR

[13] T. Kubota, “On automorphic functions and reciprocity law in a number theory”, Lect. in Math. Kyoto Univ., 2, Kinokuniya Book-Store Co. Ltd., Tokyo, 1969 | MR | Zbl

[14] Yu. I. Manin, Kubicheskie formy, M., 1972

[15] S. J. Patterson, “A cubic analogue of the theta series, I, II”, J. Reine und Angew. Math., 296 (1977), 125–161, 217–220 | DOI | MR | Zbl

[16] N. V. Proskurin, Cubic metaplectic forms and theta functions, Lect. Notes in Math., 1677, Springer-Verlag, 1998 | MR | Zbl

[17] B. Segre, The non-singular cubic surfaces, Clarendon, Oxford, 1942 | MR | Zbl