On certain finite group related to cubic theta polynomials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 196-212
Voir la notice de l'article provenant de la source Math-Net.Ru
With the Kubota–Patterson cubic theta function 27 shifted theta functions are associated. Then a certain group of permutations of the shifted theta functions is defined in a natural way, which proves to be isometric to a subgroup of the known group of permutations of 27 lines on a cubic surface.
@article{ZNSL_2004_314_a11,
author = {N. V. Proskurin},
title = {On certain finite group related to cubic theta polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {196--212},
publisher = {mathdoc},
volume = {314},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a11/}
}
N. V. Proskurin. On certain finite group related to cubic theta polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 196-212. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a11/