On certain finite group related to cubic theta polynomials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 196-212

Voir la notice de l'article provenant de la source Math-Net.Ru

With the Kubota–Patterson cubic theta function 27 shifted theta functions are associated. Then a certain group of permutations of the shifted theta functions is defined in a natural way, which proves to be isometric to a subgroup of the known group of permutations of 27 lines on a cubic surface.
@article{ZNSL_2004_314_a11,
     author = {N. V. Proskurin},
     title = {On certain finite group related to cubic theta polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--212},
     publisher = {mathdoc},
     volume = {314},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a11/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - On certain finite group related to cubic theta polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 196
EP  - 212
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a11/
LA  - ru
ID  - ZNSL_2004_314_a11
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T On certain finite group related to cubic theta polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 196-212
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a11/
%G ru
%F ZNSL_2004_314_a11
N. V. Proskurin. On certain finite group related to cubic theta polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 196-212. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a11/