Inequalities for entire functions of finite degree and polynomials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 174-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The extremal properties of polynomials and entire functions of finite degree not vanishing in the upper half-plane are studied. The exact inequalities obtained complement and strengthen the results by Genchev, Gardner and Govil, Turan, and Lax. Proofs are based on a univalence condition established by Dubinin.
@article{ZNSL_2004_314_a10,
     author = {A. V. Olesov},
     title = {Inequalities for entire functions of finite degree and polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--195},
     year = {2004},
     volume = {314},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a10/}
}
TY  - JOUR
AU  - A. V. Olesov
TI  - Inequalities for entire functions of finite degree and polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 174
EP  - 195
VL  - 314
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a10/
LA  - ru
ID  - ZNSL_2004_314_a10
ER  - 
%0 Journal Article
%A A. V. Olesov
%T Inequalities for entire functions of finite degree and polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 174-195
%V 314
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a10/
%G ru
%F ZNSL_2004_314_a10
A. V. Olesov. Inequalities for entire functions of finite degree and polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 174-195. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a10/

[1] R. Boas, “Inequalities for asymmetric entire functions”, Illinois J. Math., 1 (1957), 94–97 | MR | Zbl

[2] N. K. Govil, Q. I. Rahman, “Functions of exponential type not vanishing in a half-plane and related polynomials”, Trans Amer. Math. Soc., 137 (1969), 501–517 | DOI | MR | Zbl

[3] T. G. Genchev, “Neravenstva dlya asimetricheskikh tselykh funktsii eksponentsialnogo tipa”, Dokl. AN SSSR, 241:6 (1978), 1261–1264 | MR | Zbl

[4] R. B. Gardner, N. K. Govil, “Some inequalities for entire functions of exponential type”, Proc. Amer. Math. Soc., 123:9 (1995), 2757–2761 | DOI | MR | Zbl

[5] P. D. Lax, “Proof of a conjecture of P. Erdős on the derivative of a polynomial”, Bull. Amer. Math. Soc., 50 (1944), 509–513 | DOI | MR | Zbl

[6] P. Turan, “Über die Ableitung von Polynomen”, Compositio Math., 7 (1939), 89–95 | MR

[7] T. N. Chan, M. A. Malik, “On Erdös–Lax theorem”, Proc. Indian Acad. Sci., 92:3 (1983), 191–193 | DOI | MR | Zbl

[8] V. N. Dubinin, “Teoremy iskazheniya dlya polinomov na okruzhnosti”, Mat. sb., 191:12 (2000), 51–60 | MR | Zbl

[9] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl

[10] B. Ya. Levin, “O nekotorykh ekstremalnykh svoistvakh tselykh funktsii konechnoi stepeni”, Dokl. AN SSSR, 65:5 (1949), 605–608 | MR | Zbl

[11] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, M., 1975

[12] N. A. Lebedev, “Nekotorye otsenki dlya funktsii regulyarnykh i odnolistnykh v kruge”, Vestn. LGU, ser. mat., fiz., khim., 11:4 (1955), 3–21 | Zbl

[13] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, M., 1975 | MR

[14] N. N. Meiman, “Differentsialnye neravenstva i nekotorye voprosy raspredeleniya nulei tselykh i odnoznachnykh analiticheskikh funktsii”, Uspekhi mat. nauk, 7:3 (1952), 3–62 | MR | Zbl

[15] A. V. Olesov, “Neravenstva dlya mazhorantnykh analiticheskikh funktsii”, Zap. nauchn. semin. POMI, 314, 2004, 155–173 | MR | Zbl