Inequalities for entire functions of finite degree and polynomials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 174-195

Voir la notice de l'article provenant de la source Math-Net.Ru

The extremal properties of polynomials and entire functions of finite degree not vanishing in the upper half-plane are studied. The exact inequalities obtained complement and strengthen the results by Genchev, Gardner and Govil, Turan, and Lax. Proofs are based on a univalence condition established by Dubinin.
@article{ZNSL_2004_314_a10,
     author = {A. V. Olesov},
     title = {Inequalities for entire functions of finite degree and polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--195},
     publisher = {mathdoc},
     volume = {314},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a10/}
}
TY  - JOUR
AU  - A. V. Olesov
TI  - Inequalities for entire functions of finite degree and polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 174
EP  - 195
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a10/
LA  - ru
ID  - ZNSL_2004_314_a10
ER  - 
%0 Journal Article
%A A. V. Olesov
%T Inequalities for entire functions of finite degree and polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 174-195
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a10/
%G ru
%F ZNSL_2004_314_a10
A. V. Olesov. Inequalities for entire functions of finite degree and polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 174-195. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a10/