The distribution of the values of Hecke $L$-functions at 1
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 15-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $S_2(q)$ be the set of primitive forms in the space $S_2(\Gamma_0(q))$ of holomorpic $\Gamma_0(q)$-cusp forms of weight $2$. Let $f\in S_2(q)$ and let $L_f(S)$ be the $L$-function of $f(z)$. It is proved that the set $\{\log L_f(1) has a limit distribution function. The rate of convergence to this limit function is estimated.
@article{ZNSL_2004_314_a1,
     author = {E. P. Golubeva},
     title = {The distribution of the values of {Hecke} $L$-functions at~1},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--32},
     year = {2004},
     volume = {314},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - The distribution of the values of Hecke $L$-functions at 1
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 15
EP  - 32
VL  - 314
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a1/
LA  - ru
ID  - ZNSL_2004_314_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T The distribution of the values of Hecke $L$-functions at 1
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 15-32
%V 314
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a1/
%G ru
%F ZNSL_2004_314_a1
E. P. Golubeva. The distribution of the values of Hecke $L$-functions at 1. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 15-32. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a1/

[1] J. Hoffstein, D. Ramakrishnan, “Siegel zeros ans cusp forms”, Internat. Math. Research Notices, 6 (1995), 279–308 | DOI | MR | Zbl

[2] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, 17, AMS, Providence, RI, 1997 | MR | Zbl

[3] O. M. Fomenko, “O raspredelenii znachenii $L(1,f)$”, Zap. nauchn. semin. POMI, 302, 2003, 135–148 | MR

[4] M. B. Barban, “Metod “bolshogo resheta” i ego primeneniya v teorii chisel”, Uspekhi mat. nauk, 21:1 (1966), 51–102 | MR | Zbl

[5] A. S. Fainleib, “O raspredelenii chisla klassov polozhitelnykh kvadratichnykh form”, Trudy TashGU, “Voprosy matematiki”, 418, 1972, 272–279 | MR | Zbl

[6] J.-P. Serre, “Répartition asymptotique des valeurs propres de l'opérateur de Hecke $T_p$”, J. Amer. Math. Soc., 10:1 (1997), 75–102 | DOI | MR | Zbl

[7] J. B. Conrey, W. Duke, D. W. Farmer, “The distribution of the eigenvalues of Hecke operators”, Acta Arithm., 78:4 (1997), 405–409 | MR | Zbl

[8] P. Sarnak, “Statistical properties of eigenvalues of the Hecke operators”, Analytic Number Theory and Diophantine Problems (Stillwater, OK, 1984), Progr. Math., 70, Birkhäuser, Boston, 1987, 321–331 | MR

[9] E. P. Golubeva, “Raspredelenie sobstvennykh chisel operatorov Gekke”, Zap. nauchn. semin. POMI, 314, 2004, 33–40 | Zbl