The distribution of the values of Hecke $L$-functions at~1
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 15-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S_2(q)$ be the set of primitive forms in the space $S_2(\Gamma_0(q))$ of holomorpic $\Gamma_0(q)$-cusp forms of weight $2$. Let $f\in S_2(q)$ and let $L_f(S)$ be the $L$-function of $f(z)$. It is proved that the set $\{\log L_f(1)$ has a limit distribution function. The rate of convergence to this limit function is estimated.
@article{ZNSL_2004_314_a1,
     author = {E. P. Golubeva},
     title = {The distribution of the values of {Hecke} $L$-functions at~1},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--32},
     publisher = {mathdoc},
     volume = {314},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - The distribution of the values of Hecke $L$-functions at~1
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 15
EP  - 32
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a1/
LA  - ru
ID  - ZNSL_2004_314_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T The distribution of the values of Hecke $L$-functions at~1
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 15-32
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a1/
%G ru
%F ZNSL_2004_314_a1
E. P. Golubeva. The distribution of the values of Hecke $L$-functions at~1. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 15-32. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a1/