The distribution of the values of Hecke $L$-functions at~1
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 15-32
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $S_2(q)$ be the set of primitive forms in the space $S_2(\Gamma_0(q))$ of holomorpic $\Gamma_0(q)$-cusp forms of weight $2$. Let $f\in S_2(q)$ and let $L_f(S)$ be the $L$-function of $f(z)$. It is proved that the set $\{\log L_f(1)$ has a limit
distribution function. The rate of convergence to this limit function is estimated.
@article{ZNSL_2004_314_a1,
author = {E. P. Golubeva},
title = {The distribution of the values of {Hecke} $L$-functions at~1},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--32},
publisher = {mathdoc},
volume = {314},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a1/}
}
E. P. Golubeva. The distribution of the values of Hecke $L$-functions at~1. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 20, Tome 314 (2004), pp. 15-32. http://geodesic.mathdoc.fr/item/ZNSL_2004_314_a1/