The functor of order-preserving functionals of finite degree
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 11, Tome 313 (2004), pp. 135-138
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the space of all order-preserving functionals with finite supports is a compact, and if the supports are one-point sets, then this space is the Stone–Chech compactification of a given Tychonoff space.
@article{ZNSL_2004_313_a2,
author = {A. A. Zaitov},
title = {The functor of order-preserving functionals of finite degree},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--138},
publisher = {mathdoc},
volume = {313},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a2/}
}
A. A. Zaitov. The functor of order-preserving functionals of finite degree. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 11, Tome 313 (2004), pp. 135-138. http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a2/