The functor of order-preserving functionals of finite degree
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 11, Tome 313 (2004), pp. 135-138

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the space of all order-preserving functionals with finite supports is a compact, and if the supports are one-point sets, then this space is the Stone–Chech compactification of a given Tychonoff space.
@article{ZNSL_2004_313_a2,
     author = {A. A. Zaitov},
     title = {The functor of order-preserving functionals of finite degree},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--138},
     publisher = {mathdoc},
     volume = {313},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a2/}
}
TY  - JOUR
AU  - A. A. Zaitov
TI  - The functor of order-preserving functionals of finite degree
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 135
EP  - 138
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a2/
LA  - ru
ID  - ZNSL_2004_313_a2
ER  - 
%0 Journal Article
%A A. A. Zaitov
%T The functor of order-preserving functionals of finite degree
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 135-138
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a2/
%G ru
%F ZNSL_2004_313_a2
A. A. Zaitov. The functor of order-preserving functionals of finite degree. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 11, Tome 313 (2004), pp. 135-138. http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a2/