The functor of order-preserving functionals of finite degree
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 11, Tome 313 (2004), pp. 135-138
Voir la notice du chapitre de livre
It is proved that the space of all order-preserving functionals with finite supports is a compact, and if the supports are one-point sets, then this space is the Stone–Chech compactification of a given Tychonoff space.
@article{ZNSL_2004_313_a2,
author = {A. A. Zaitov},
title = {The functor of order-preserving functionals of finite degree},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--138},
year = {2004},
volume = {313},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a2/}
}
A. A. Zaitov. The functor of order-preserving functionals of finite degree. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 11, Tome 313 (2004), pp. 135-138. http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a2/
[1] T. Radul, “On the functor of order-preserving functionals”, Comm. Math. Univ. Carol., 39:3 (1998), 609–615 | MR | Zbl
[2] A. A. Zaitov, “On categorical properties of the functor of order-preserving functionals”, Methods of Functional Analysis and Topology, 9:4 (2003), 357–364 | MR | Zbl
[3] V. N. Basmanov, “Kovariantnye funktory konechnykh stepenei na kategorii bikompaktnykh prostranstv”, Fund. i prikl. matem., 2:3 (2002), 637–654 | MR
[4] V. V. Fedorchuk, V. V. Filippov, Obschaya topologiya. Osnovnye konstruktsii, MGU, M., 1988