Some properties of the functor $O_\beta$
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 11, Tome 313 (2004), pp. 131-134
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the space $O_\beta(X)$ of weakly additive order-preserving normed functionals with compact supports is a convex subset of the space $C_p(C_b(X))$.
@article{ZNSL_2004_313_a1,
author = {R. B. Beshimov},
title = {Some properties of the functor $O_\beta$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {131--134},
year = {2004},
volume = {313},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a1/}
}
R. B. Beshimov. Some properties of the functor $O_\beta$. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 11, Tome 313 (2004), pp. 131-134. http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a1/
[1] T. Radul, “On the functor of order-preserving functionals”, Comm. Math. Univ. Carol., 39:3 (1998), 609–615 | MR | Zbl
[2] A. A. Zaitov, “On categorical properties of the functor of order-preserving functionals”, Methods of Functional Analysis and Topology, 9:4 (2003), 357–364 | MR | Zbl
[3] R. B. Beshimov, “On weakly additive functionals”, Matematychni Studii, 18:2 (2002), 179–186 | MR | Zbl
[4] A. A. Zaitov, Nekotorye svoistva prostranstv znakoperemennykh mer i funktora slabo additivnykh normirovannykh i sokhranyayuschikh poryadok funktsionalov, Kand. diss., Tashkent, 2004