Some properties of the functor $O_\beta$
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 11, Tome 313 (2004), pp. 131-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that the space $O_\beta(X)$ of weakly additive order-preserving normed functionals with compact supports is a convex subset of the space $C_p(C_b(X))$.
@article{ZNSL_2004_313_a1,
     author = {R. B. Beshimov},
     title = {Some properties of the functor $O_\beta$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--134},
     year = {2004},
     volume = {313},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a1/}
}
TY  - JOUR
AU  - R. B. Beshimov
TI  - Some properties of the functor $O_\beta$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 131
EP  - 134
VL  - 313
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a1/
LA  - ru
ID  - ZNSL_2004_313_a1
ER  - 
%0 Journal Article
%A R. B. Beshimov
%T Some properties of the functor $O_\beta$
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 131-134
%V 313
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a1/
%G ru
%F ZNSL_2004_313_a1
R. B. Beshimov. Some properties of the functor $O_\beta$. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 11, Tome 313 (2004), pp. 131-134. http://geodesic.mathdoc.fr/item/ZNSL_2004_313_a1/

[1] T. Radul, “On the functor of order-preserving functionals”, Comm. Math. Univ. Carol., 39:3 (1998), 609–615 | MR | Zbl

[2] A. A. Zaitov, “On categorical properties of the functor of order-preserving functionals”, Methods of Functional Analysis and Topology, 9:4 (2003), 357–364 | MR | Zbl

[3] R. B. Beshimov, “On weakly additive functionals”, Matematychni Studii, 18:2 (2002), 179–186 | MR | Zbl

[4] A. A. Zaitov, Nekotorye svoistva prostranstv znakoperemennykh mer i funktora slabo additivnykh normirovannykh i sokhranyayuschikh poryadok funktsionalov, Kand. diss., Tashkent, 2004