The Kantorovich metric: initial history and little-known applications
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 69-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We remind of the history of the transportation metric (Kantorovich metric) and the Monge–Kantorovich problem. We describe several little-known applications: the first one concerns the theory of decreasing sequences of partitions (tower of measures and iterated metric), the second one concerns Ornstein's theory of Bernoulli automorphisms ($\bar d$-metric), and the third one is the formulation of the strong Monge–Kantorovich problem in terms of matrix distributions.
@article{ZNSL_2004_312_a8,
     author = {A. M. Vershik},
     title = {The {Kantorovich} metric: initial history and little-known applications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--85},
     year = {2004},
     volume = {312},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a8/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - The Kantorovich metric: initial history and little-known applications
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 69
EP  - 85
VL  - 312
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a8/
LA  - ru
ID  - ZNSL_2004_312_a8
ER  - 
%0 Journal Article
%A A. M. Vershik
%T The Kantorovich metric: initial history and little-known applications
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 69-85
%V 312
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a8/
%G ru
%F ZNSL_2004_312_a8
A. M. Vershik. The Kantorovich metric: initial history and little-known applications. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 69-85. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a8/

[1] L. V. Kantorovich, Matematicheskie metody organizatsii i planirovaniya proizvodstva, Izd-vo LGU, L., 1939

[2] L. V. Kantorovich, O peremeschenii mass, Dokl. AN SSSR, 37, no. 7–8, 1942, 227–229

[3] L. V. Kantorovich, “Ob odnoi probleme Monzha”, Uspekhi mat. nauk, 3:2 (1948), 225–226

[4] M. L. Gavurin, L. V. Kantorovich, “Primenenie matematicheskikh metodov v voprosakh analiza gruzopotokov”, Problemy povysheniya effektivnosti raboty transporta, Izd-vo AN SSSR, M.–L., 1949, 110–138

[5] L. V. Kantorovich, Ekonomicheskii raschet nailuchshego ispolzovaniya resursov, Izd-vo AN SSSR, M., 1960 | MR

[6] L. V. Kantorovich, G. Sh. Rubinshtein, “Ob odnom prostranstve vpolne additivnykh funktsii”, Vestn. LGU. Matematika. Mekhanika. Astronomiya, 7:2 (1958), 52–59 | Zbl

[7] L. V. Kantorovich, “Ob odnom effektivnom metode resheniya nekotorykh klassov ekstremalnykh problem”, Dokl. AN SSSR, 28:3 (1940), 212–215

[8] L. V. Kantorovich, “O nekotorykh novykh podkhodakh k vychislitelnym metodam i obrabotke nablyudenii”, Sib. mat. zhurn., 3:5 (1962), 701–709

[9] L. V. Kantorovich, “Funktsionalnyi analiz i prikladnaya matematika”, Uspekhi mat. nauk, 3:6 (1948), 89–185 | MR | Zbl

[10] A. M. Vershik, “Neskolko zamechanii o beskonechnomernykh zadachakh lineinogo programmirovaniya”, Uspekhi mat. nauk, 25:5 (1970), 117–124

[11] A. M. Vershik, “Ubyvayuschie posledovatelnosti izmerimykh razbienii i ikh primeneniya”, Dokl. AN SSSR, 193:4 (1970), 748–751 | Zbl

[12] A. M. Vershik, “Teoriya ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Algebra i analiz, 6:4 (1994), 1–68 | MR | Zbl

[13] M. Émery, “Espaces probabilisés filtrés: de la théorie de Vershik au mouvement brownien, via les idées de Tsirelson”, Séminaire BOURBAKI, 53 année, No 882, 2000–2001 ; M. Emeri, “Veroyatnostnye prostranstva s filtratsiei: ot teorii Vershika k brounovskomu dvizheniyu cherez idei Tsirelsona”, Zap. nauchn. semin. POMI, 307, 2004, 236–265 | MR | MR

[14] A. M. Vershik, M. M. Rubinov, “Obschaya teorema dvoistvennosti v lineinom programmirovanii”, Matematicheskaya ekonomika i funktsionalnyi analiz, Nauka, M., 1974, 35–55

[15] A. Barvinok, A Course in Convexity, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[16] Leonid Vitalevich Kantorovich: chelovek i uchenyi, t. 1., SO RAN, Novosibirsk, 2002

[17] A. M. Vershik, “O L. V. Kantoroviche i lineinom programmirovanii”, Leonid Vitalevich Kantorovich: chelovek i uchenyi, t. 1, Izd-vo SO RAN, Novosibirsk, 2002, 130–152

[18] C. Villani, Topics in Optimal Transportation, Amer. Math. Soc., Providence, RI, 2000 | MR

[19] Y. Brenier, “Extended Monge–Kantorovich theory”, Lecture Notes in Math., 1813, 2003, 91–122 | MR

[20] W. Gangbo, R. J. McCann, “The geometry of optimal transportation”, Acta Math., 177:2 (1966), 113–161 | DOI | MR

[21] U. Frish, Turbulentnost. Nasledie A. N. Kolmogorova, Fazis, M., 1998

[22] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, Boston, 1999 | MR | Zbl

[23] A. M. Vershik, “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. anal. i pril., 36:2 (2002), 12–28 | MR

[24] D. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale Univ. Press, New Haven–London, 1974 | MR | Zbl

[25] A. M. Vershik, “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, Uspekhi mat. nauk, 55:4 (2000), 59–128 | MR | Zbl

[26] A. M. Vershik, “Mnogoznachnye otobrazheniya s invariantnoi meroi (polimorfizmy) i markovskie operatory”, Zap. nauchn. semin. LOMI, 72, 1977, 26–61 | Zbl

[27] A. Vershik, Polymorphims, Markov processes, random perturbations of K-automorphisms, in preparation

[28] S. T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley, Chichester, 1991 | MR | Zbl

[29] A. M. Vershik, “O rabotakh D. Ornshteina, usloviyakh slaboi zavisimosti i o klassakh statsionarnykh protsessov”, Teor. veroyatn. i primen., 21:3 (1976), 673–675 | Zbl