The Kantorovich metric: initial history and little-known applications
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 69-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We remind of the history of the transportation metric (Kantorovich metric) and the Monge–Kantorovich problem. We describe several little-known applications: the first one concerns the theory of decreasing sequences of partitions (tower of measures and iterated metric), the second one concerns Ornstein's theory of Bernoulli automorphisms ($\bar d$-metric), and the third one is the formulation of the strong Monge–Kantorovich problem in terms of matrix distributions.
@article{ZNSL_2004_312_a8,
     author = {A. M. Vershik},
     title = {The {Kantorovich} metric: initial history and little-known applications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--85},
     publisher = {mathdoc},
     volume = {312},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a8/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - The Kantorovich metric: initial history and little-known applications
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 69
EP  - 85
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a8/
LA  - ru
ID  - ZNSL_2004_312_a8
ER  - 
%0 Journal Article
%A A. M. Vershik
%T The Kantorovich metric: initial history and little-known applications
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 69-85
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a8/
%G ru
%F ZNSL_2004_312_a8
A. M. Vershik. The Kantorovich metric: initial history and little-known applications. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 69-85. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a8/