The Kantorovich metric: initial history and little-known applications
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 69-85
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We remind of the history of the transportation metric (Kantorovich metric) and the Monge–Kantorovich problem. We describe several little-known applications: the first one concerns the theory of decreasing sequences of partitions (tower of measures and iterated metric), the second one concerns Ornstein's theory of Bernoulli automorphisms ($\bar d$-metric), and the third one is the formulation of the strong Monge–Kantorovich problem in terms of matrix distributions.
			
            
            
            
          
        
      @article{ZNSL_2004_312_a8,
     author = {A. M. Vershik},
     title = {The {Kantorovich} metric: initial history and little-known applications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--85},
     publisher = {mathdoc},
     volume = {312},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a8/}
}
                      
                      
                    A. M. Vershik. The Kantorovich metric: initial history and little-known applications. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 69-85. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a8/