Contractual $M$-core and equilibrium allocations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 55-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with equilibrium characterization of the so-called totally contractual allocations [1–3]. As a consequence of the characterization obtained, a rather strong coalitional stability of equilibrium allocations is established. Due to the complicated logical structure of contractual blocking, we pay strong attention to the pure descriptive aspects of the concepts under consideration. Quite simple sufficient conditions guaranteeing coincidence of the totally contractual core and the set of Walrasian equilibrium allocations are established, and the structure of domination relations induced by several rules of breaking the contracts is studied. Game-theoretic approach elaborated in the paper rests on reduction of the original blocking to some more simple domination relations in cooperative games, associated with the contractual blocking in question.
@article{ZNSL_2004_312_a7,
     author = {V. A. Vasil'ev},
     title = {Contractual $M$-core and equilibrium allocations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--68},
     year = {2004},
     volume = {312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a7/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
TI  - Contractual $M$-core and equilibrium allocations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 55
EP  - 68
VL  - 312
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a7/
LA  - en
ID  - ZNSL_2004_312_a7
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%T Contractual $M$-core and equilibrium allocations
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 55-68
%V 312
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a7/
%G en
%F ZNSL_2004_312_a7
V. A. Vasil'ev. Contractual $M$-core and equilibrium allocations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part XI, Tome 312 (2004), pp. 55-68. http://geodesic.mathdoc.fr/item/ZNSL_2004_312_a7/

[1] V. L. Makarov, Economical equilibrium: Existence and extremal properties, Problems of the Modern Mathematics, 19, Nauka, Moscow, 1982

[2] V. L. Makarov, V. A. Vasil'ev et al., “On some problems and results of the modern mathematical economics”, Matekon, 25:4 (1989), 4–95

[3] V. A. Vasil'ev, Exchange Economies and Cooperative Games, Novosibirsk State Univ. Press, Novosibirsk, 1984